

Alstom's Chemical Looping Technology

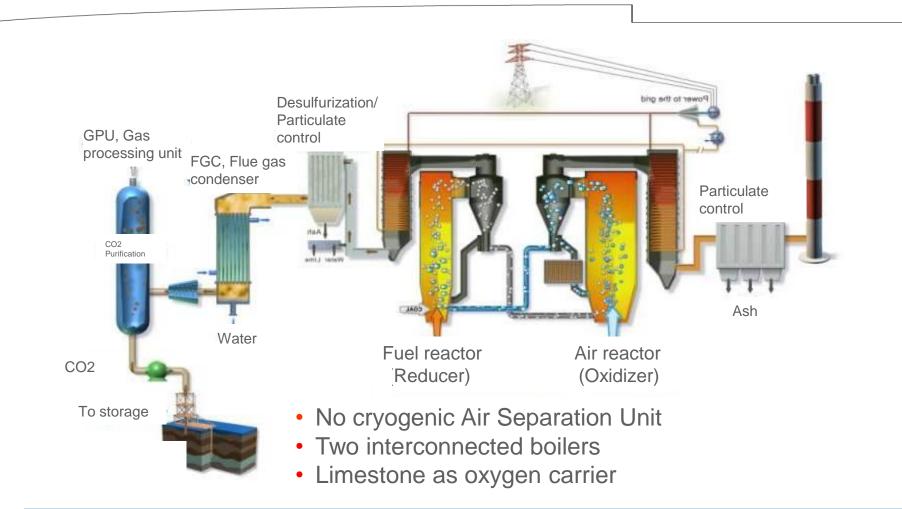
Program Update

John Chiu

Herb Andrus (PI)

Alstom Power, Inc.

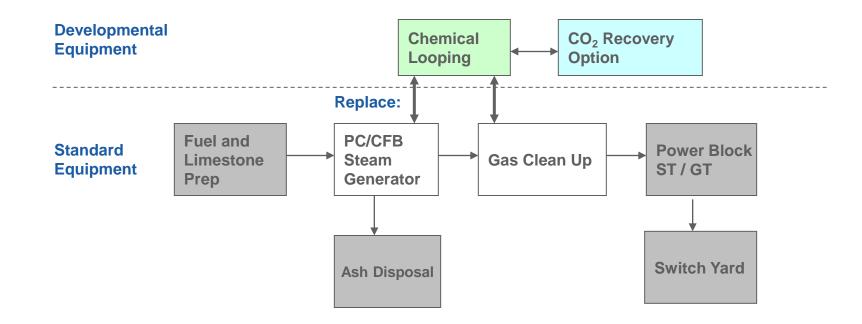
2014 USDOE/NETL CO2 Capture Technology Meeting 29 July to 1 August, 2014 Pittsburgh, PA



CLC Concepts	Page 2
Limestone CLC Development	Page 8
Limestone CLG Development	Page 23
Conclusions and Future Plans	Page 28

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 2

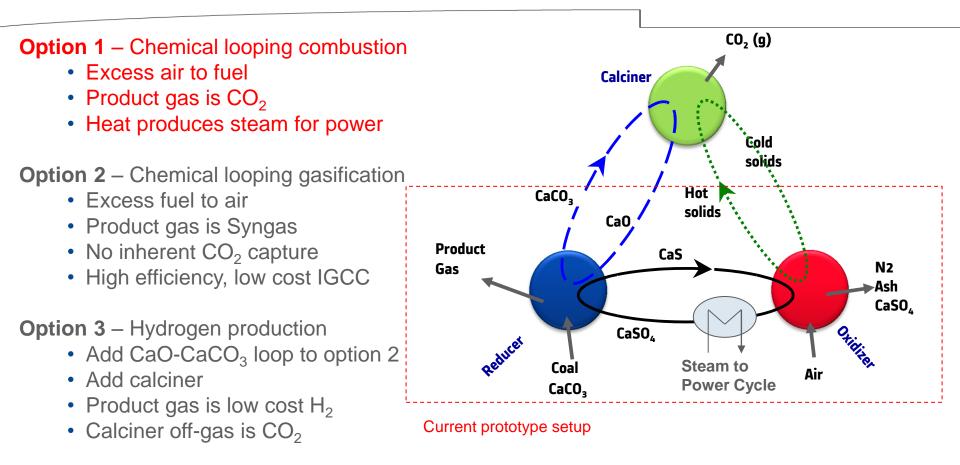
Chemical Looping Combustion Concept What is it?



Advanced oxy-combustion system without Air Separation Unit

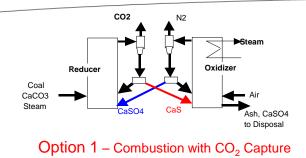
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 3

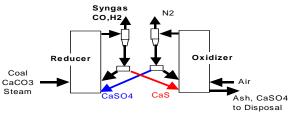
© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to thind parties, without express written authority, is strictly prohibited.


Chemical Looping Combustion Concept How it fits in a Power Plant

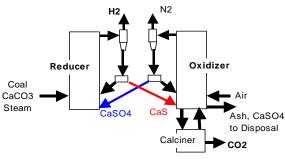
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 4

Limestone Chemical Looping Concept and Options


Oxygen Carrier:


- Limestone-based : Alstom US (3 MWt, Alstom PPL, Windsor, CT)
- Metal oxide based: Alstom Europe (1 MWt, Darmstadt University)

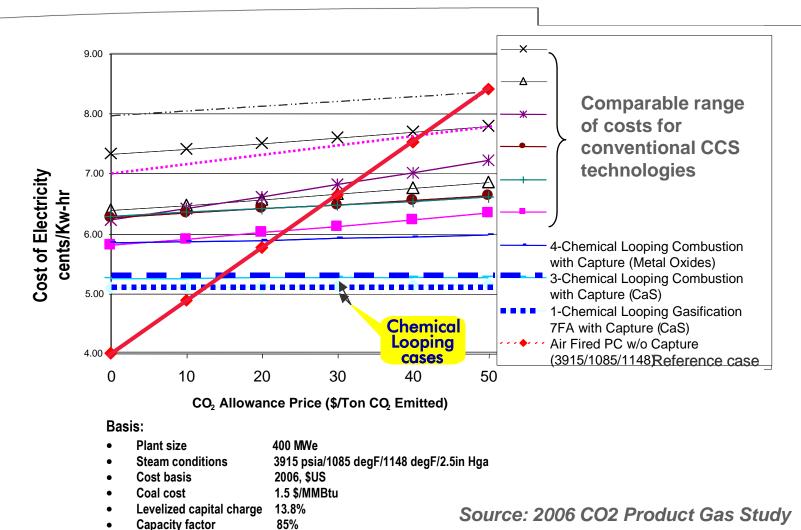
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 5


© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Chemical looping Process: Options and Applications

Option 2 – Syngas with no CO₂ Capture

Option 3 – Hydrogen with CO₂ Capture


Applications

- CO₂ Capture PC Retrofit
- CO₂ Capture CFB Retrofit
- CO₂ Capture-Ready Power Plant
- Advanced Steam Cycles
- ICGG with Down-Stream CO₂ Capture
- Industrial Syngas
- · Coal-to-Liquid Fuels
- CO₂ Capture PC Retrofit
- CO₂ Capture CFB Retrofit
- CO₂ Capture-Ready PC/CFB Power Plant
- Advanced Steam Cycles
- IGCC with CO₂ Capture
- Fuel Cell Cycles
- Industrial Hydrogen, CO₂
- Lowest Cost CO₂ Capture Option
- Competitive with or without CO₂ Capture

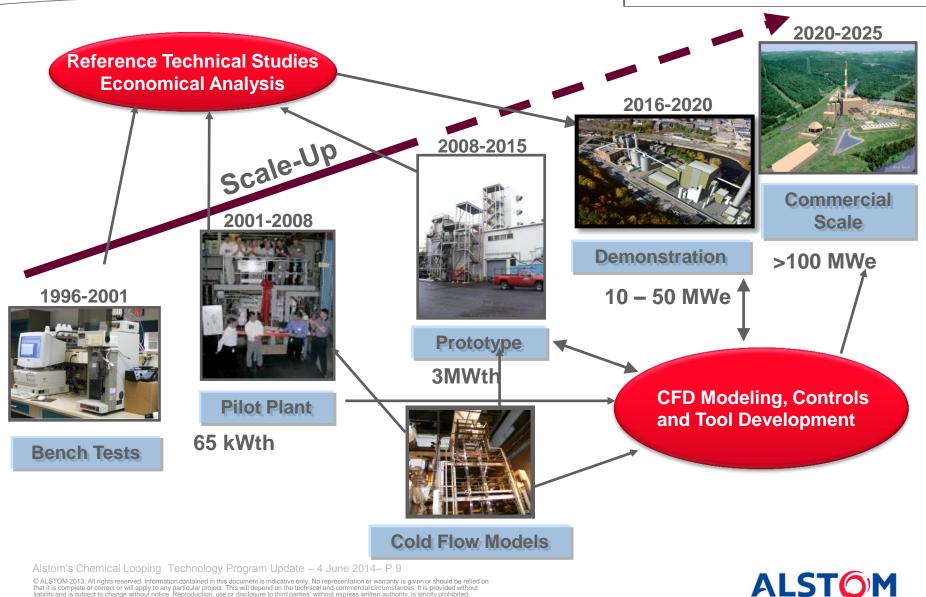
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 6

Chemical Looping Economics Why do we do it?

Chemical Looping, the lowest COE vs. all of the alternatives studied to date.

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 7

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without noice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.



CLC Concepts	Page 2
Limestone CLC Development	Page 8
Limestone CLG Development	Page 23
Conclusions and Future Plans	Page 28

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 8

Limestone Chemical Looping Combustion (LCL-CTM) **Commercialization Plan**

Limestone Chemical Looping Combustion Project Workscope & Schedule

				Bench Facilities Available	۵ S	rototy; vailab						Enc Pha		
	Test Facility Move (Not part of Phase II)	-			_									
	Prototype													
	Decommission	-												
	Disassembly		-	_										
	Move Reinstall													
	Re-pipe and instrument			-	_									
	Re-commission				-	•								
	ISBF Move and Recommission					•								
	40 foot Cold Flow Model													
	Bench Facilities													
		_						12					Fir	and loss
TASK				BP2 Report			BP Bep							
TASK 1	Project Management & Reporting			BP2 Report			Rep						Rep	
1	Project Management & Reporting													
	Project Management & Reporting Prototype Engineering, Mods & Testing						Bop	ort						
1	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification					2		ort	6		8-			
1	Project Management & Reporting Prototype Engineering, Mods & Testing					2	Bop	ort	` 6	V -	8			
1	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing					2	Bop	ort	<u>, e</u>	· · ·	8			
1	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support					2	Bop	ort	6	<u>v</u>	8			
1 2	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support Solids Transport Testing & CFD						Bop	ort	6	V	****			
1 2	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support Solids Transport Testing & CFD Bench Testing						Bop	ort	6	V	8			
1 2	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support Solids Transport Testing & CFD	· · ·					Bop	ort	6	V	*			
1 2 3	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support Solids Transport Testing & CFD Bench Testing Sample Prep & Analysis						Bop	ort	•	V	8			
1	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support Solids Transport Testing & CFD Bench Testing						Bop	ort	6	· · · · · · · · · · · · · · · · · · ·	*****			
1 2 3	Project Management & Reporting Prototype Engineering, Mods & Testing Engineering & Modification Testing Process Refinment and Testing Support Solids Transport Testing & CFD Bench Testing Sample Prep & Analysis						Bop	ort	6	BP4	8			

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 10

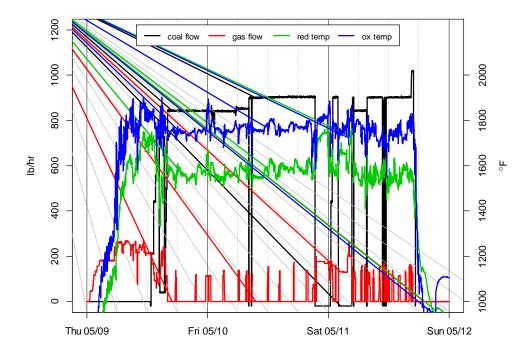
© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to thind parties, without express written authority, is strictly prohibited.

Phase II Deliverables.xls 1 Nov 2013

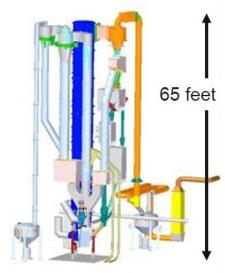
Phase IV A – Prototype Testing (3 MWt)

- Main objectives:
 - Design, engineering, construction and operation
 - Autothermal operation of prototype
 - Provide data required to design, build and operate a reliable demonstration plant
- Status:
 - Engineering & go/no-go (Oct 2008 Apr 2010)
 - EPC, Shakedown (Apr 2010 Dec 2010)
 - First coal firing May 2011
 - Autothermal operation achieved in July 2012; 40 hrs May 2013
 - Current activity: Phase II Test 1; Facility Move
- Total DOE-funded budget: \$9.2 million (80% DOE):
 - 8.2 for preliminary engineering and EPC
 - 1.0 for preliminary testing
- Additional Alstom funding of \$3.5 million to achieve autothermal operation plus a 40 hour autothermal run

65 feet



Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 11


3 MWth Prototype Performance Highlights

- Achieved 1st autothermal operation on two crushed coals.
- Performance is not perfect, but good enough to see:
 - Major chemical looping reactions take place
 - Test results indicate directions for improvement
- No major concept changes have been required.

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 12

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without noice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibiled.

Prototype (3 MWt)

Highlights:

- 40 hour Autothermal Operation
- Coal-only operation (Pittsburgh & Adaro)
- Chemical looping reactions working
- Unburned carbon < 0.5%
- Up to 97% carbon capture achieved
- Sulfur controllable to near zero
- Stable operation for long periods

Limestone Chemical Looping (LCL[™]) Development Advanced Oxy Combustion – Phase I and II Objectives and Status

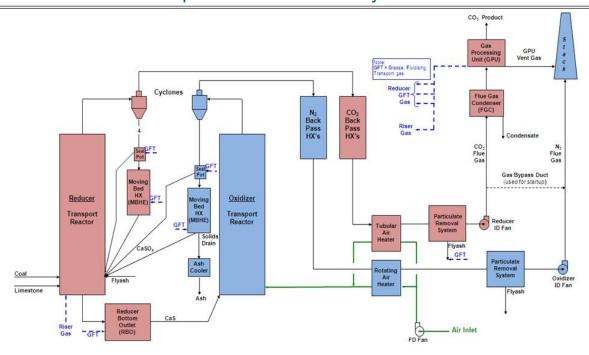
ICCL ZENZ Consulting

DOE/NETL Cooperative Agreement No. DE-FE0009484 Phase I – Completed June 2013

- Techno-economic studies on 4 cases for 550 MW_e
- Case # 1. Atm. pressure LCL-C[™] system using transport reactors
 - 2. An atm. pressure LCL-C[™] system with the Reducer reactor in the CFB mode,
 - 3. The atm. pressure LCL-C[™] system of Case 1 with an AUSC steam cycle,
 - 4. A pressurized LCL-C[™] system with an AUSC steam cycle.
 - Engineering Studies
 - •Bench Scale test TGA and Plug Flow Static Bed

DOE/NETL Cooperative Agreement No. DE-FE0009484 Phase II

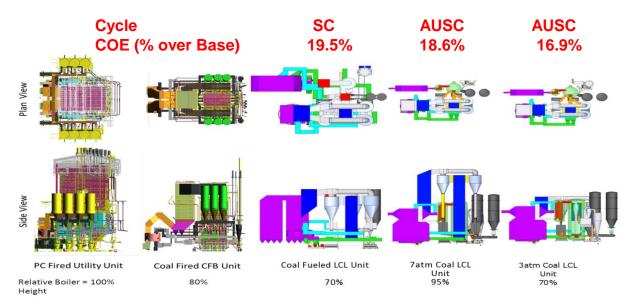
- Address 7 main technology gaps
 - Various Bench tests
 - 6 3MWth Pilot test after modifications
- Update techno-economic study


AST KENTUCKY

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 13

Alstom Chemical Looping Reference Studies Latest analysis – June 2013

•	Case 1 [base]	Atm. pressure LCL-C™ system using "fast CFB" transport reactors
•	Case 2	Atm. pressure LCL-C [™] system with the Reducer reactor in the CFB mode,
•	Case 3	Atm. pressure LCL-C [™] system of Case 1 with an AUSC steam cycle,
•	Case 4	3 – 7 bar pressurized LCL-C™ system with an AUSC steam cycle


CLC has potential to be lowest COE for coal-based power with CCS

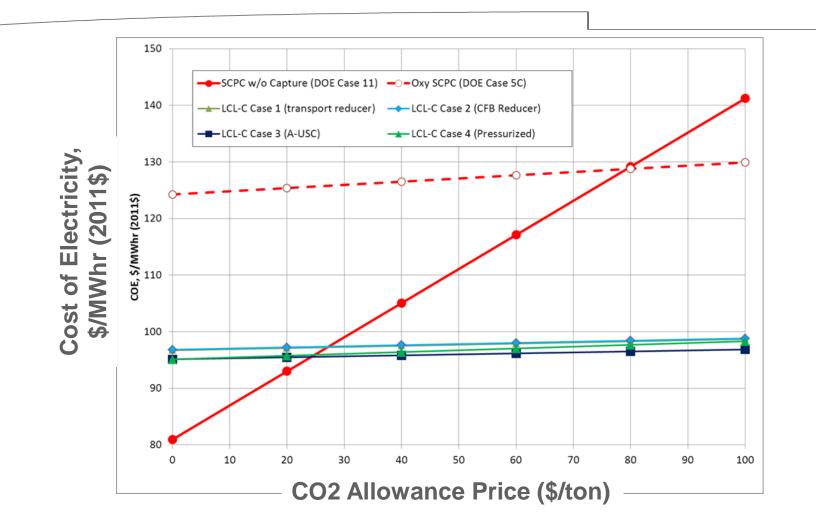
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 14

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial dircumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping – Phase I Results

Phase	I - Perforr	nance a	and Cost S	Summary	vs DOE Go	oals	
	DOE/NETL	DOE					
	Base Case	GOAL	Case 1	Case 2	Case 3	Case 4	Case 4A
Technology	PC				LCL-C™		
Pressure (bar)	1		1	1	1	7	3
Reducer Reactor			transport	CFB	transport	transport	transport
Steam Cycle	USC		USC	USC	AUSC	AUSC	AUSC
Net Capacity (MW)	550		550	550	550	550	551
Net Efficiency (%)	39.3		35.8	35.8	41.1	42.7	42.0
Investment Cost (\$/kW)	2452		2795	2801	2944	3067	2978
COE (cnts/kW-hr)	8.10		9.67	9.68	9.51	9.60	9.46
CO2 Avoided Cost (\$/tor	n)		27	27.3	24.2	26.5	23.4
Carbon Capture (%)	0	>90%	97%	97%	98%	96%	97%
COE (% over base)		<35%	19.5%	19.6%	17.5%	18.6%	16.9%

Alstom's Chemical Looping Technology Program update - 4 June 2014- P 10

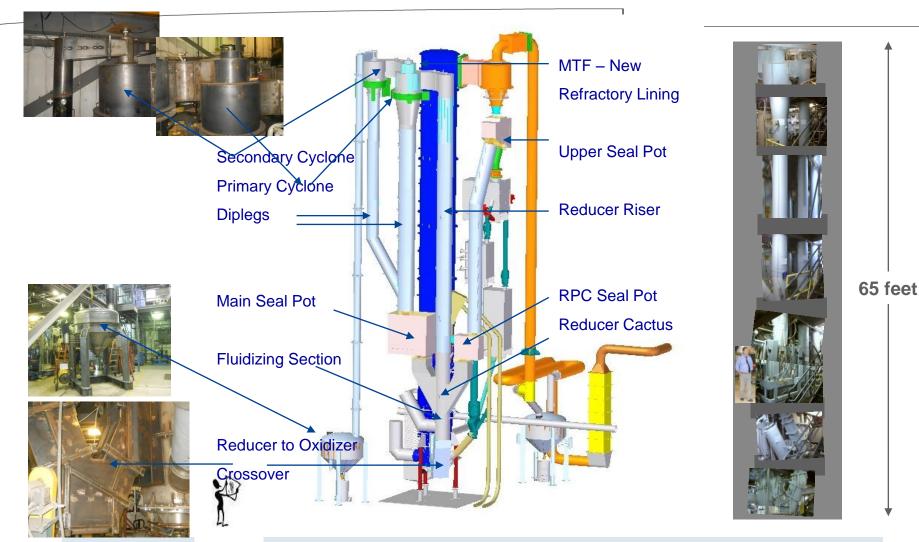

Chemical Looping Development US DOE-sponsored techno-economic analysis

	Baseline: US DOE SCPC plant, no capture	US DOE Oxy-SCPC plant	Alstom SC Chem Loop Plant, Case 1
Nominal output (net, MW)	550	550	550
Capacity factor (%)	85	85	85
HHV efficiency (% HHV)	39.3	29.3	35.8
CO ₂ capture (%)	0	93	97
CO ₂ emitted rate (lb/MWh)	1210	113	40
EPC overnight cost (\$/kW)	2452	3977	DOE gool: 2795
Cost of Electricity Breakdown			DOE goal:
Fuel (\$/MWh)	25.53	34.25	>90% 28.04
Capital (\$/MWh)	38.19	66.23	46.55
O&M fixed (\$/MWh)	9.48	14.24	10.58
O&M variable (\$/MWh)	7.74	9.54	11.53
T&S adder to COE (\$/MWh)	0	8.29	7.08
1 st yr COE (w/o T&S, \$/MWh)	80.95	124.25	DOE goal: 96.7
LCOE (w/o T&S, \$/MWh)	102.64	157.55	<40% 122.62
Fuel cost (\$/MMBtu)	2.94	2.94	2.94
Construction period (yrs)	5	5	5
Operational period (yrs)	30	30	30
% Increase – Levelized COE		53.5	19.5

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 16

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to thind parties, without express written authority, is strictly prohibited.

COE Sensitivity to CO₂ Allowance Price

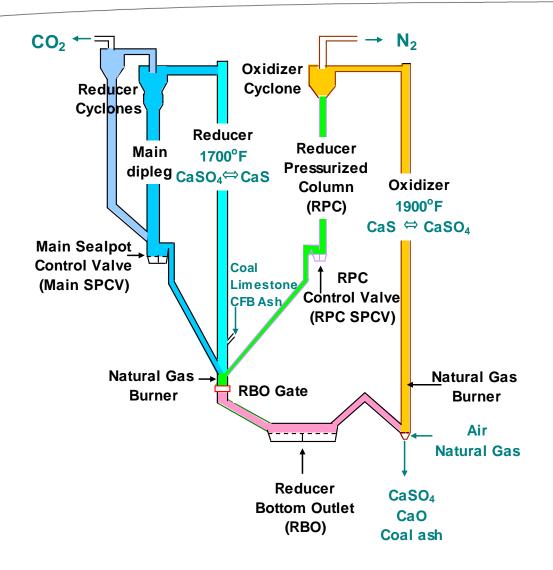


LCL-CTM process at economic parity at \$24-26/ton CO₂

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 17

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Chemical Looping 3 MWth Prototype Component Construction


Retrofit of Alstom's existing Multi-use Test Facility (Windsor, CT)

Alstom's Chemical Looping Technology Program Update - 4 June 2014- P 18

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express writen authority, is strictly prohibited.

ALST<mark>O</mark>M

Chemical Looping 3 MWth Prototype Schematic

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 19

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or vill apply to any particular project. This will depend on the technical and commercial dircumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Design Flow Rates:

Coal	700 lb/hr
Limestone	125 lb/hr
Air	8,000 lb/hr
RPC flow	170,000 lb/hr
Inventory	6,000 lb

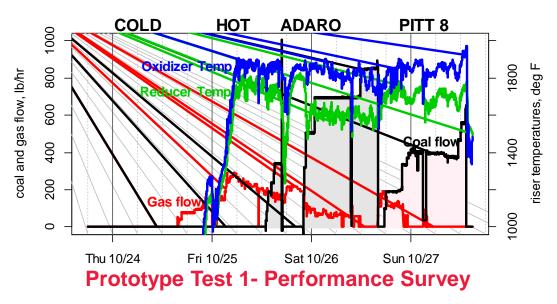
Sorbent Constituents:

 $CaSO_4 \Leftrightarrow CaS$ CaO Coal ash

Reactions:

Reducer: $CaSO_4 + Coal \Leftrightarrow CaS + 2 CO_2$ Oxidizer: $CaS + Air \Leftrightarrow CaSO_4 + heat$

Reducer "Combustion" $CaSO_4 + 4CO \Leftrightarrow CaS + 4CO_2$ $2C(coal) + 2CO_2 \Leftrightarrow 4CO$ $CaSO_4 + 2C(coal) \Leftrightarrow CaS + 2CO_2$


Limestone Chemical Looping – Phase II

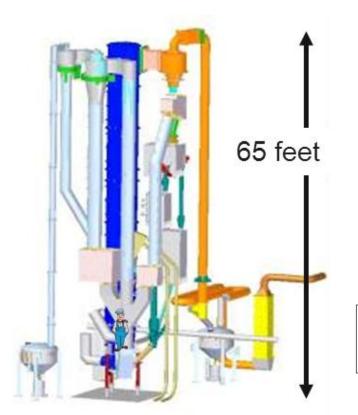
Phase II Objective:

Resolve the 3 MWth Prototype Technology Gaps identified in Phase I

Phase II Status:

- Phase II is in progress
- 3 MWth Prototype Test 1 Completed
- 40-Foot CFM Tests Underway
- Prototype Move & Modifications

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 20


© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is stircity prohibited.

40-ft Cold Flow Model (CFM)

Limestone Chemical Looping (LCL™) Development

Modifications & Planned Work

Prototype (3 MWt)

ID	TECHNICAL GAP	AFFECTS
1	High Solids Loss Rate	operability
2	Main DipLeg Flushing	operability
3	Solids stability	operability
4	Sorbent Activation	operability
5	Sulfur Capture / Loss	operability
6	Low temperatures during some tests	operability
7	Carbon Carryover to Oxidizer	performance

Define Gap / check solution:

Prototype Performance Shortfall Analyze Prototype Data Define Bench Test

find solution:

40-Ft CFM for Solids Transport

50-Ft & Bench Test Rig(s) for Chemistry, Conversions, Transport

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 21

Limestone Chemical Looping (LCL[™]) Development Current 3 MWth Prototype Modifications

MODIFICATION		INTENDED GAP		EXPECTED
		IMPROVEMENT	STATUS	COMPLETION
1 Main SPCV Repair	Structural Repair & Eliminate Gas Leakage	2, 3, 4	Fab' Complete	22 June 2014
2 Main DipLeg Gas Drains	Drain process gas; improve stability	1, 2, 3	Fab' Complete	15 Aug 2014
3 RPC Gas Drain	Improve RPC solids stability	3, 6	Fab' Complete	15 Aug 2014
4 Steam Activation Heat Exchanger	Permit full load; improve sulfur capture; reduce CO	4, 5	In Engineering	15 Sep 2014
5 Secondary DipLeg Plug	Improve Main DipLeg testing/troubleshooting	1, 2, 3	In Fab'	15 Aug 2014
6 Lower RPC SPCV Fluidizing Nozzles	Increase Oxidizer-to-Reducer Solids Flow	3, 6	Fab' Complete	15 Sep 2014
7 100 kWt LCL-C™ Test Facility	Provide quick-turn-around, low-cost Trial-Horse for Prototype	1 thru 7	Engr' & Fab'	30 Dec 2014
8 Gas Sample System Upgrades	Improve In-process Solid/Gas Sampling ability	1 thru 7	In Engineering	30 Dec 2014
9 Gas Analyzer System Upgrades	Improve H2O, N2, sulfur measurement & Mat'l Bal	1 thru 7	In Engineering	30 Dec 2014
10 Coal/Limestone Prep Upgrades	Replace inadequate crusher with cone crusher	5, 7	In Engineering	15 Mar 2015
11 Improve Operator Solids Mgt' Display	Make solids transport management easier for Operators	1, 2, 3	In Engineering	15 Mar 2015
12 Prototype/CFM testing & analysis	Develop improved tools for Operators	1 thru 7	Ongoing	Ongoing
			BP2PrototypeMods.xls	
			25 June 2014	

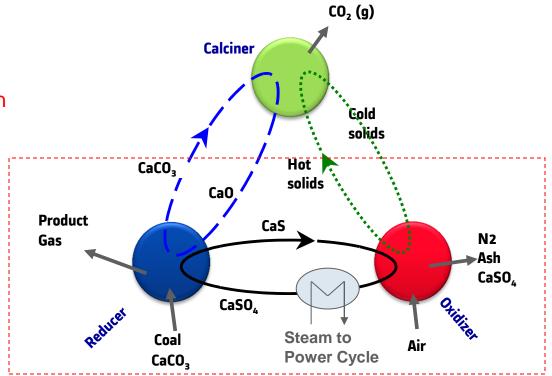
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 22

CLC Concepts	Page 2
Limestone CLC Development	Page 8
Limestone CLG Development	Page 23
Conclusions and Future Plans	Page 28

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 23

Limestone Chemical Looping Concept

Option 1 – Chemical looping combustion


- Excess air to fuel
- Product gas is CO₂
- Heat produces steam for power

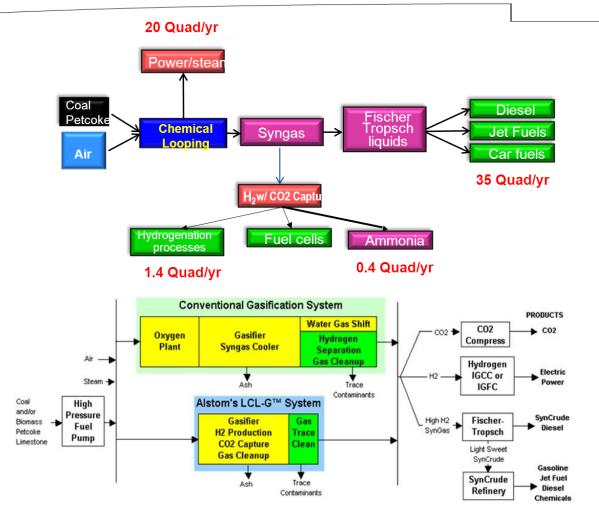
Option 2 – Chemical looping gasification

- Excess fuel to air
- Product gas is Syngas
- No inherent CO₂ capture
- High efficiency, low cost IGCC

Option 3 – Hydrogen production

- Add CaO-CaCO₃ loop to option 2
- Add calciner
- Product gas is low cost H₂
- Calciner off-gas is CO₂

Current prototype setup

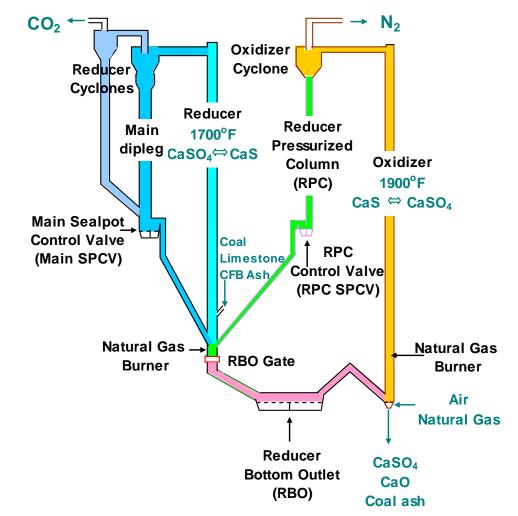

Oxygen Carrier:

- Limestone-based : Alstom US (3 MWt, Alstom PPL, Windsor, CT)
- Metal oxide based: Alstom Europe (1 MWt, Darmstadt University)

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 24

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

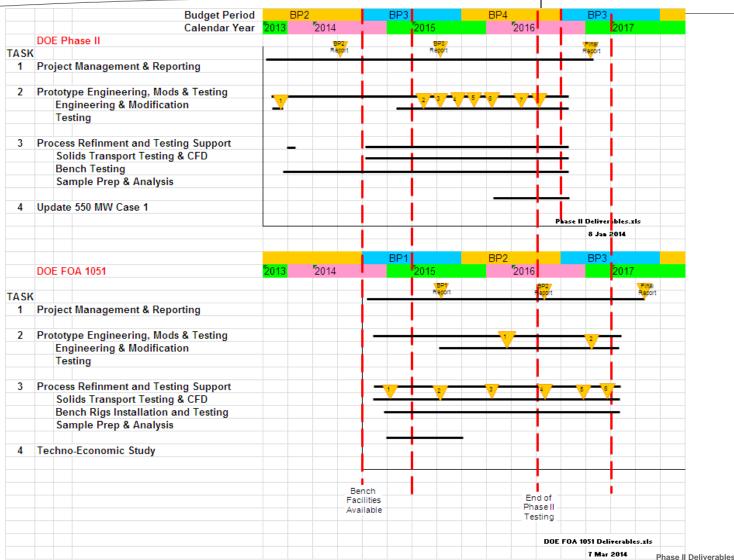
Syngas Option – LCL-G[™] Syngas for Petrochemical/Power


Another route to chemical looping demonstration

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 25

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to thind parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping (LCL-G[™]) Development


3 MWt LCL[™] Prototype

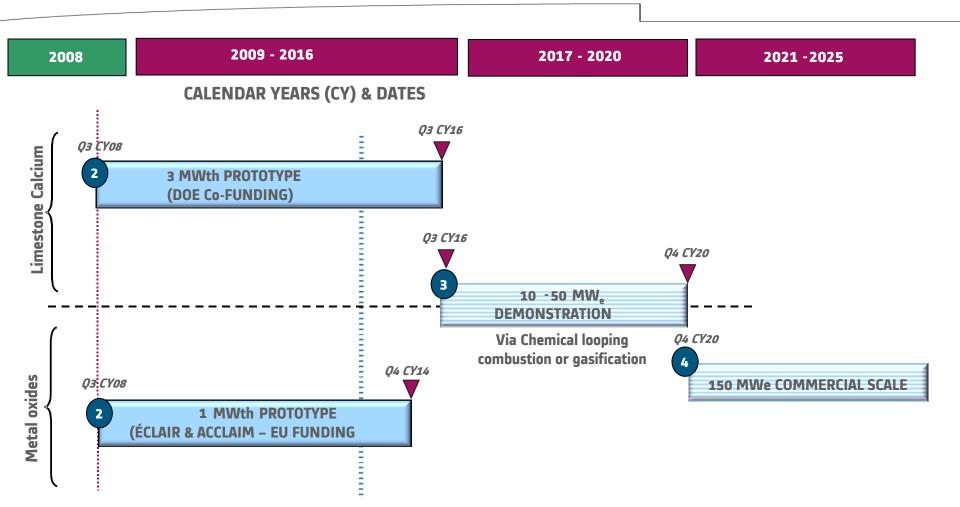
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 26

© ALSTOM 2013. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Limestone Chemical Looping - Gasification Project Workscope & Schedule

Phase II Deliverables.xls 1 Nov

Alstom's Chemical Looping Technology Program Update - 4 June 2014- P 27



CLC Concepts	Page 2
Limestone CLC Development	Page 8
Limestone CLG Development	Page 23
Conclusions and Future Plans	Page 28

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 28

Chemical Looping Combustion Technology Development Roadmap

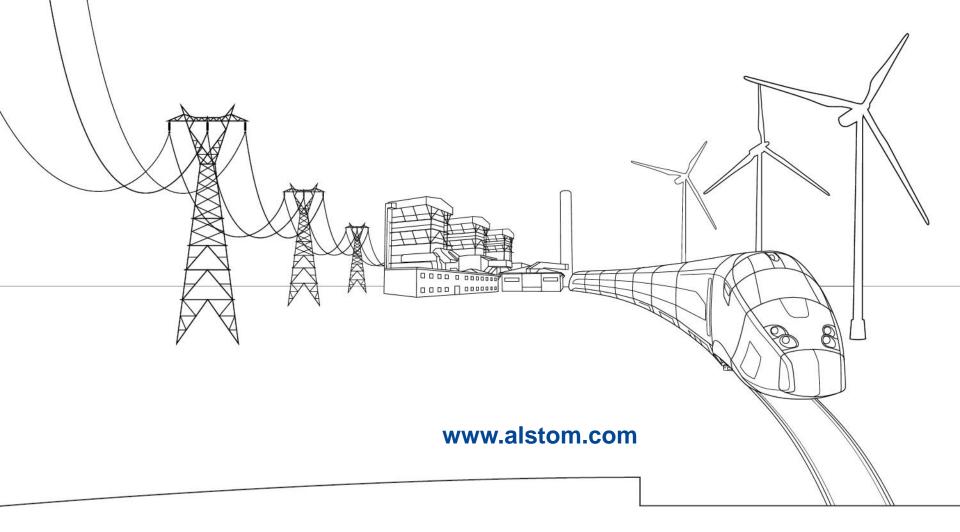
Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 29

Chemical Looping Technology Conclusions

- CLC technology:
 - Potential for high efficiency, low cost power and low cost CO₂ capture
- CLC flexiblity:
 - New or retrofit application
 - Syngas, hydrogen or power
- CLC appears feasible for limestone and MeOx
- Next steps field demonstration:
 - power or refinery
 - 10-50 MWe scale

Chemical Looping Potential – Flexible and Low Cost

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 30


• DOE / NETL Cooperative Agreement No. DE-FE0009484 Project Manager Dr. Briggs White

• DOE / NETL FOA 1051

Constructive Direction, cooperation, and support

Alstom's Chemical Looping Technology Program Update – 4 June 2014– P 31

