

DOE "Carbon Capture Program" SBIR Project Review

A High-Efficiency Process for CO₂ **Conversion to Hydrocarbon Fuels**

Hui Xu (PI) Giner, Inc. Newton, MA

Sub Awardee: Prof. ELIZABETH J. BIDDINGER City College of New York

March 24, 2017

Outline

- \triangleright Introduction and background
- \triangleright Executive Summary
- \triangleright Preliminary Data
- \triangleright Phase I accomplishments
- \triangleright Phase II plan

Executive Summary

- \triangleright Electrochemical conversion of CO₂ to methane and other fuels have been investigated using Cu based catalysts
	- Cu morphology was tailored for methane synthesis
	- Ability to tune gaseous product selectivity through morphology
- \triangleright High CH₄ FE efficiency 42% has been achieved and electrical efficiency has been doubled
	- Ability to minimize H_2 efficiency while increasing CH₄ efficiency
	- Knowledge gained on gaseous products can be transferred to liquids products
- ▶ Current density ~ 50 mA/cm² (Cu area submerged for reduction) has been reached with $CH₄$ efficiency > 40%
	- 10 times increase compared to literatures
	- Increasing current decreased product selectivity of hydrocarbons
- Gas flow-Cell has been designed and fabricated and Phase II work and strategies have been proposed 3³

Project Overview

Timeline

- Project Start Date: 6/13/2016
- Project End Date: 3/12/2017

Budget

• Phase I 150K

Partners

• Dr. Elizabeth Biddinger The City College of New York (CCNY)

Barriers Addressed

• Low conversion and efficiency for direct electro-reduction of $CO₂$ to hydrocarbon fuels

Technical Targets

- Further develop the $CO₂$ reduction catalysts for electrochemical reduction of $CO₂$ to hydrocarbon fuels
- Optimize operating conditions of electrolyzer cells to maximize the efficiency, selectivity and yield of hydrocarbon fuels
- Construct flow electrolyzer cells by integrating $CO₂$ reduction catalysts with other components

Background: CO² Electro-Reduction

Theoretical Electrode Potential

Catalyst and %FE

Y. Hori, in Modern Aspects of Electrochemistry, eds. C. G. Vayenas,, Springer, New York, 2008, vol. 42, pp. 89-189.

Effective Catalysts for CO² to Methane

Background: CO² Electro-Reduction

- **Chronocoulometry : -1V and the charge Q=(1.5-15C) or (2.43 C/cm² - 21.43C/cm²) 0.25M copper sulfate penta-hydrate (CuSO⁴ 5H2O)**
- **Cathode: Cu, Ni, Ti , Anode: Cu flag**

Catalysts for Electrochemical CO² Reduction

A. N. Karaiskakis and E. J. Biddinger, *Energy Technology*, 2016, **DOI: 10.1002/ente.201600583**.

Technical Approaches

Membrane (Nafion-212)

Tasks

Key Questions

- **What is the main factor that drives selectivity on rough polycrystalline Cu?**
- **► Cu Reconstruction under CO₂ Electrochemical Conditions**
- **Result transfer from liquid cell to gas flow cells**

Evaluation of Cu facet dependence

HRTEM- Reconstruction on the surface

Cu/Cu After CO² ELR

Alexandros N. Karaiskakis and Elizabeth J. Biddinger, *Energy Technology* **2016***, DOI: 10.1002/ente.201600583R1*

- **Cu/Cu surface areas (a) Dominant Cu(200)**
- Cu/Cu larger particles (b) \rightarrow Dominant Cu(111)
- Cu foil substrate \rightarrow Dominant Cu(200)

Operando EC-STM

Y.-G. Kim, J. H. Baricuatro, A. Javier, J. M. Gregoire, M. P. Soriaga, *Langmuir* **2014**, *30*, 15053-15056

Summary and Literature

Alexandros N. Karaiskakis and Elizabeth J. Biddinger, *Energy Technology* **2016***, DOI: 10.1002/ente.201600583R1*

1. Catalysts Synthesis Method

Synthesis Methodology - Electrodeposition:

- -Rapid synthesis of nanomaterials
- Low cost and Industrial usage
- -High purity products
- -Ability to use different substrates
- **Goal: Uniform reproducible deposition**

Evaluated factors:

- Distance between electrodes
- Current density
- Deposition reproducibility
- Morphology

Electrodeposition Optimization

Control over the Catalyst Morphology

~3μm crystals

Cu/Cu: ~300nm particles

Electrochemical Area Evaluation

Capacitance:
$$
C = \frac{Current \ Density}{Scan \ Rate}
$$

Surface roughness = $\frac{C}{C_0}$

16

Evaluation of Roughness

Capacitance and surface roughness factor of Cu-based

Cu/Cu(1), Cu/Cu(2) synthesized by electrodeposition - changing deposition characteristics

Alexandros N. Karaiskakis and Elizabeth J. Biddinger, *under preparation*

Experimental Set-up

Membrane (Nafion-212)

- **Chronoamperometry :**
	- **-1.6V to -2.4 V vs. Ag/AgCl**

WE: Cu, CE: Pt-mesh,

Ref: Ag/AgCl (3M NaCl)

- **0.1M KHCO³ , CO² saturated**
- **pH: 6.8**
- **Temp: 25C and 1 atm**
- **Membrane: Nafion-212**

Evaluation of Cu facet dependence

 $Cu/Cu \rightarrow$ Dominant Cu(200), 2^{nd} Cu(111)

Cu-bare Dominant Cu(200)

Alexandros N. Karaiskakis and Elizabeth J. Biddinger, *Energy Technology* **2016***, DOI: 10.1002/ente.201600583R1*

Impact of Roughness on FE

Cu/Cu(2) Dominant Cu(200), 2nd Cu(111) Roughness 7.8

Alexandros N. Karaiskakis and Elizabeth J. Biddinger, *under preparation* Alexandros N. Karaiskakis and Elizabeth J. Biddinger, *Energy Technology* **2016***, DOI: 10.1002/ente.201600583R1*

Catalysts' Shape Evaluation

Cu mesh used:

- **0.7 cm² (as Cu foil)-comparison purposes**
- **Based on surface density: 0.7cm x 1cm**
- **Wire attachment not possible 0.7cm x 9cm**

Improved CH⁴ Formation Using Electro-polished Cu-mesh

High performance ~40%FE CH₄

First time reported: lowest H₂ formation rates and CH₄ main product, not just FE

Comparison Between Cu Foil and Mesh

Comparison Between Cu Foil and Mesh

Formation rates and current densities

Cu-bare electropolished Cu-mesh electropolished

Current density (mA/cm²), area of Cu exposed to electroreduction

3. Giner Cell Configuration and Experiment Set Up

Experiment Setup

Optimizing Experiment Set Up

List of Tests Performed

Initial Cell Test

Flow rate: 20ml/min; No flow field Diffusion media: 36 mil plastic mesh Membrane: N115 Cathode Catalyst: Copper Bare Foil

Higher current ≠ better performance

SUMMARY

1. Controllable Synthesis

Electrodeposition > Roughness, Morphology

2. Tunable synthesis of catalysts based on desired product

3. Activity Improvement

SUMMARY (Cont'd)

High Activity Tunable Catalysts Based on Desired Product

- 1. Ability to synthesize catalyst with the controllable deposition technique developed
- 2. Knowledge gained on gaseous products can be transferred to liquids products
- 3. The customer can select the desired product based on their needs

Proposed Phase II Work

- \triangleright Further improve efficiency and formation rates of desired products through morphology control (deposition)
- \triangleright Liquid products evaluation and control (ethanol and formic acid) based on knowledge gained (gaseous methane and ethylene)
- ▶ Cell design optimization modelling (COMSOL)
- ▶ Focus will be given to optimize single flow cell (25cm²)
	- Flow field, gas diffusion, mesh vs. foil
	- Better gas and liquid composition sampling
	- Gas and liquid product analysis
- \triangleright Short stack demonstration
	- A 6-cell (each 50 cm²) will be delivered

Phase II Team

- CCNY:
	- Continued catalyst modification and scale-up using liquid cell;
- Giner:
	- Gas flow single cell and short stack design
- NREL
	- Integration w/ renewable energy
	- TEA and sensitivity studies

Project Management and Continuation

 \triangleright Project review meeting on March 24;

 \triangleright Final report will be submitted on March 27;

 \triangleright Phase II proposal will be submitted on April 3

Acknowledgments

 \triangleright Financial support from DOE SBIR Office

- \triangleright Project Monitoring
	- Steven Mascaro (program manger)
	- Issac Aurelio
- \triangleright Subcontractor
	- Dr. Elizabeth Biddinger at CCNY
	- Mr. Alexandros Karaiskakis
- Giner Personnel
	- Teddy Zhang