Electrochemical Conversion of Carbon Dioxide to Alcohols

Feng Jiao

Center for Catalytic Science & Technology Department of Chemical and Biomolecular Engineering University of Delaware, Newark, DE (USA)

DOE/NETL Project Kick-Off Meeting, Morgantown, WV July 10, 2017

My research

Representative publications:

JACS 139, 3774-3783 (**2017**); JACS 139, 1885-1893 (**2017**); Nano Energy 29, 439-456 (**2016**); ACS Catal. 5, 4586-4591 (**2015**); ACS Catal. 5, 4293-4299 (**2015**); Nat. Commun. 6:6567 (**2015**); Nat. Commun. 5:3242 (**2014**).

Faculty at UD (CO₂ related)

Feng Jiao Associate Professor Chemical & Biomolecular Engineering

Expertise: Electrocatalysis, CO₂ Utilization, Nanomaterials, Batteries.

Raul Lobo Claire D. LeClaire Professor Chemical & Biomolecular Engineering

Heterogeneous Catalysis, CO₂ Capture,

Yushan Yan Distinguished Engineering Professor Chemical & Biomolecular Engineering

Expertise:

Electrocatalysis, Polymer Electrolyte Membranes, Flow Batteries, Zeolites.

Dionisios G. Vlachos Allan and Myra Ferguson Professor Chemical & Biomolecular Engineering

Expertise:

Expertise:

Zeolites, Biomass.

Heterogeneous Catalysis, Computational Modeling, Biomass.

Bingjun Xu Assistant Professor Chemical & Biomolecular Engineering

Expertise: Electrocatalysis, Spectroscopies, Thermochemical Cycles.

Key capabilities: CO₂ capture and utilization

Introduction to CO₂ Electrolysis

Technical Challenges:

- ✤ Selectivity
- multiple pathways with similar potentials
- Overpotential (energy penalty)
- additional energy cost

Key half reactions:

Carbon monoxide:

- ✓ 2-electron process
 - low electricity consumption
- ✓ Gas at ambient conditions
 - easy to separate from liquid
- Important feedstock for existing chemical processes
- ✓ High selectivity (>90%, Ag) can be achieved.

Other products:

- Formate/formic acid (80%, Sn)
- Ethanol (15-20%, Cu)
- Propanol (15-20%, Cu)
- Acetaldehyde (20-30%, Cu)
- 1) Hori, in Modern Aspects of Electrochemistry. (Springer, New York, 2008), vol. 42, pp. 89-189.
- 2) Jiao et al. Nano Energy, 2016.

Electrocatalysts: CO₂ to Ethanol

- $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$ $E^0 = -0.10 V$
- $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$ $E^0 = 0.17 V$

 $2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_5OH + 3H_2O \quad E^0 = 0.09V$

Liquid products (alcohols) are ideal:

- High volumetric energy density, portability
- Valuable, easily incorporated in current infrastructure

Javier Perez-Ramirez et al. Green Chemistry. 2015. pp 5114-5130

CO₂ to Alcohols

Copper is the only monometal that catalyzes CO₂ reduction to hydrocarbons in aqueous.

Proposed mechanism:

۲

Sichao Ma et al. Journal of Power Sources, pp. 219-228, 2016.

Project Objectives and Approach

- 1) Development of critical components for an electrochemical system that is able to convert CO_2 into C_2/C_3 alcohols
- 2) Demonstration of key functions of an integrated electrochemical system for CO₂ conversion using flue gas from coal-fired power plants
- 3) Full analysis of economics and life-cycle of the CO₂ electrolysis technology for CO₂ emissions mitigation from coal-fired power plants

Our Approach:

Project Management

Proposed Two-stage Process and its Chemistry

Subsystem: CO_2 electrolyzer Cathode reaction: $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$ Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO_2 \rightarrow 2CO + O_2$

Subsystem: CO electrolyzer Cathode reaction: $2CO + 8H^+ + 8e^- \rightarrow C_2H_6O + H_2O$ Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO + 3H_2O \rightarrow C_2H_6O + 2O_2$

Proposed Two-stage Process and its Chemistry

Subsystem: CO_2 electrolyzer Cathode reaction: $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$ Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO_2 \rightarrow 2CO + O_2$

Subsystem: CO electrolyzer Cathode reaction: 2CO + 8H⁺ + 8e⁻ \rightarrow C₂H₆O + H₂O Anode reaction: 2H₂O \rightarrow 4H⁺ + O₂ + 4e⁻ Overall reaction: 2CO + 3H₂O \rightarrow C₂H₆O + 2O₂

Silver electrocatalyst for CO₂ reduction

- Ag (\$15/oz.) is cheaper than Au (\$1162/oz.)
- Stable in aqueous electrolytes

A step surface of Ag is more favorable for electrochemical CO_2 reduction.

Rosen, Hutchings, Lu, Rivera, Zhou, Vlachos, & Jiao* ACS Catalysis 5, 4293 (2015).

- ✤ High surface area: 150 times larger than thin film
- Rich step sites on the highly curved surface
- Synthetic method can be extended to other metals
- Self-supporting catalyst: no conductive substrate

100nm

WD 6.4mm

15.0kV

SEI

X30,000

CO₂ electrolyzer prototype

- Funded by NASA
- Built in June 2016
- 36 electrochemical cells arranged in 6 stacks
- 2 membrane separator
- Engineering safety controls
- Customized software for data acquisition

CO₂ Electrolyzer Prototype

- CO₂ Process Rate: 450 grams/day
- Power Consumption: 50 watts (per stack)

Task 2.0: CO₂ Electrolyzer Subsystem Development

Subtask 2.1: Conceptual Design of CO₂ Electrolyzer Subsystem

Process control & optimization

Subtask 2.2: Development of Nanostructured Ag Cathode

- High current density (production rate) & low overpotential (energy penalty)
- High selectivity towards CO
- Robust & stable

Subtask 2.3: Development of Non-Precious Metal-based Anode

- High current density & low overpotential
- Robust & stable

Subtask 2.4: Development of Gas/Liquid Contactor and Gas/Liquid Separator

- CO₂ delivery to catalyst (active site)
- Product separation

Subtask 2.5: Fabrication of CO₂ Electrolyzer Subsystem

- Scale up
- Integration

Subtask 2.6: Evaluation of CO₂ Electrolyzer Subsystem Performance

Subtask 2.7: Alternative CO₂ Electrolyzer Design for Performance Enhancement

Boost performance using alternative designs

The Key Performance Parameters for the proposed CO₂ electrolyzer subsystem are:

- CO Faradaic efficiency higher than **70%** at the subsystem level
- Cell voltage less than **3.0 V** with a total current of **5 A**
- Continuous operation for more than 3 hours with less than 20% performance loss

Proposed Two-stage Process and its Chemistry

Annealed Cu Particles for CO Reduction

Cu particles (\approx 1 $\mu m)$ were annealed at 500 °C for 6 hrs and deposited on carbon paper GDL (1 mg/cm²).

- Selective towards alcohols at moderate overpotentials
- Max. current density: 0.5 mA/cm² with n-PrOH selectivity of 10%
- Low current density is due to the low solubility of CO in the aqueous electrolyte

Flow cell design for CO to alcohols

The low solubility of CO in aqueous electrolyte motivates a direct gas feed.

A gas diffusion layer allows CO to be fed directly to the catalyst/electrolyte interface.

Task 3.0: Development of CO Electrolyzer Subsystem

Subtask 3.1: Conceptual Design of CO Electrolyzer Subsystem

• Process control & optimization

Subtask 3.2: Development of Nanostructured Cu Cathode

- High current density (production rate)
- High selectivity towards alcohols
- Robust & stable

Subtask 3.3: Development of CO Electrolysis Flow Cell and Multi-cell Stack

• Electrode/electrolyte interface

Subtask 3.4: Fabrication and Evaluation of CO Electrolyzer Subsystem

- Scale up
- Integration

The Key Performance Parameters for the proposed CO electrolyzer subsystem are:

- Alcohol Faradaic efficiency higher than **40%** at the subsystem level
- Cell voltage less than **3.0 V** with a total current of **10 A**
- Continuous operation for more than **3 hours** with less than **20%** performance loss

System Integration and Evaluation

Subsystem integration efforts:

- CO/CO₂ separation strategy
- Pressures and flow rates between subsystems
- Production rates of subsystems
- Process control & safety
- System compatibility with flue gases

Task 4.0: Integration and Evaluation of the Complete Electrolyzer System

Subtask 4.1: Conceptual Design of Integrated Electrolyzer System for C₂/C₃ Alcohol Production

• Process control & optimization

Subtask 4.2: Fabrication and Integration of CO₂ Electrolyzer and CO Electrolyzer Subsystems

- Scale up (matches of production rates)
- Integration (balance of pressure, flow rate, and heat)

Subtask 4.3: Evaluation of the Performance of the Complete Electrolyzer System Subtask 4.4: Optimize the Performance of the Complete Electrolyzer System Subtask 4.5: Investigation of Flue Gas Compatibility

• SO_x, NO_x, N₂, O₂, H₂ contamination effects

The Key Performance Parameters for the integrated electrolyzer system are as follows:

- Overall energy efficiency higher than 28% at the system level
- Continuous operation for more than **3 hours** with less than **30%** performance loss

Task 5.0: Economics and Life-cycle Analysis

Subtask 5.1: Technical Scalability and Economic Feasibility Study Subtask 5.2: Life-cycle Analysis Subtask 5.3: Technology Gap Analysis

The team will conduct a process scalability assessment, an economic feasibility study, lifecycle analysis and technology gap analysis based on the data collected from the R&D project. The compiled results from these studies will be delivered at the conclusion of the task.

Project Schedule and Milestones

				Budget Period 1				Budget Period 2							
				06/01/2017-11/30/2018				12/01/2018-05/31/2020							
	Start Date	End Date	Cost	Q1 Q2 Q3 Q4 Q5 Q6			Q7	Q8	Q9	Q10	Q11	Q12			
Task 1.0 - Project Management and Planning	6/1/2017	5/31/2020	\$50,000												
Subtask 1.1 - Project Management and Planning	6/1/2017	5/31/2020													
Subtask 1.2 - Briefings and Reports	6/1/2017	5/31/2020													
Subtask 1.3 – Safety and Environmental Analysis	6/1/2017	5/31/2020													
Milestones															
Milestone 1.a - Updated Project Management and Planning				X											
Milestone 1.b - Complete Kick-off Meeting				X											
Milestone 1.c - Complete Review Meetings						X			Х		X		X		
Milestone 1.d - Complete Midterm Report										X					
Milestone 1.e - Complete Final Review Meeting															Х
Milestone 1.f - Complete Final Report															Х
Milestone 1.g - Complete Safety and Environmental Analysis						X			Х			Х			
Task 2.0 - Development of CO ₂ Electrolyzer Subsystem	6/1/2017	11/30/2018	\$250,000												
Subtask 2.1 - Conceptual Design of CO ₂ Electrolyzer Subsystem	6/1/2017	8/31/2017													
Subtask 2.2 - Development of Nanostructured Ag Cathode	6/1/2017	11/31/2017													
Subtask 2.3 - Development of Non-precious Metal-based Anode	6/1/2017	11/31/2017													
Subtask 2.4 - Development of Gas/Liquid Contactor and Gas/Liquid Separator	12/1/2017	2/28/2018													
Subtask 2.5 - Fabrication of CO ₂ Electrolyzer Subsystem	3/1/2017	5/31/2018													
Subtask 2.6 - Evaluation of CO ₂ Electrolyzer Subsystem Performance	6/1/2018	8/31/2018													
Subtask 2.7 - Alternative CO ₂ Electrolyzer Design for Performance															
Enhancement	9/1/2018	11/30/2018													
Milestones															
Milestone 2.a - Complete the Conceptual Design of CO ₂ Electrolyzer				Х											
Milestone 2.b - Complete the Development of Electrocatalysts					X										
Milestone 2.c - Complete the Development of Contactor and Separator						X									
Milestone 2.d - Complete the Fabrication of CO ₂ Electrolyzer Subsystem							Х								
Milestone 2.e - Complete the Evaluation of CO ₂ Electrolyzer Subsystem								Х							
Milestone 2.f - Complete the Evaluation of Alternative CO ₂ Electrolyzer					v										
Design									~						

Project Schedule and Milestones

Task 3.0 - Development of CO Electrolyzer Subsystem	6/1/2017	11/30/2018	\$200,000									
Subtask 3.1 - Conceptual Design of CO Electrolyzer Subsystem		8/31/2017										
Subtask 3.2 - Development of Nanostructured Cu Cathode		2/28/2018										
Subtask 3.3 - Development of CO Electrolysis Flow Cell and Multi-cell Stack	3/1/2018	5/31/2018										
Subtask 3.4 - Fabrication and Evaluation of CO Electrolyzer Subsystem	6/1/2018	11/30/2018										
Milestones												
Milestone 3.a - Complete the Conceptual Design of CO Electrolyzer				X								
Milestone 3.b - Complete the Fabrication of CO Electrolyzer Subsystem						Χ						
Milestone 3.c - Complete the Evaluation of CO Electrolyzer Subsystem							Х					
Task 4.0 - Integration and Evaluation of the Complete Electrolyzer System	12/1/2018	5/31/2020	\$400,000									
Subtask 4.1 - Conceptual Design of Integrated Electrolyzer System for C2/C3												
Alcohol Production	12/1/2018	2/28/2019										
Subtask 4.2 - Fabrication and Integration of CO ₂ Electrolyzer and CO												
Electrolyzer Subsystems	12/1/2018	8/31/2019										
Subtask 4.3 - Evaluation of the Performance of the Complete Electrolyzer												
System	9/1/2019	2/29/2020										
Subtask 4.4 - Optimize the Performance of the Complete Electrolyzer System	3/1/2020	5/31/2020										
Subtask 4.5 - Investigation of Flue Gas Compatibility		5/31/2020										
Milestones												
Milestone 4.a - Complete the Conceptual Design of the Integrated Electrolyzer								v				
System								л				
Milestone 4.b - Complete the Fabrication of the Integrated Electrolyzer System									Х			
Milestone 4.c - Complete the Evaluation of the Integrated Electrolyzer System											Х	
Milestone 4.d - Complete the Optimization of the Integrated Electrolyzer												v
System												л
Milestone 4.e - Complete the Flue Gas Compatibility Investigations												Х
Task 5.0 - Economics and Life-cycle Analysis	6/1/2019	5/31/2020	\$100,000									
Subtask 5.1 - Refinement of the Cost Analysis Using the Experimental Data	6/1/2019	11/30/2019										
Subtask 5.2 - Re-evaluation of the Performance Metrics Using the												
Experimental Data	9/1/2019	2/29/2020										
Subtask 5.3 - Revisit the Life-cycle Analysis	3/1/2020	5/31/2020										
Milestones												
Milestone 5.a - Complete the Cost Analysis										Χ		
Milestone 5.b - Updated Performance Metrics											Х	
Milestone 5.c - Complete the Life-cycle Analysis												Х

Key Decision Points

Decision Point	Date	Success Criteria
Go/no-go Decision Point #1	11/30/2018	[1] Completion of subsystem fabrication and evaluation. [2] CO ₂ electrolyzer subsystem meets all the Key Performance Parameters: CO Faradaic efficiency higher than 70% at the subsystem level, cell voltage less than 3.0 V with a total current of 5 A, continuous operation for more than 3 hours with less than 20% performance loss. [3] CO electrolyzer subsystem meets all the Key Performance Parameters: alcohol Faradaic efficiency higher than 40% at the subsystem level, cell voltage less than 3.0 V with a total current of 10 A, continuous operation for more than 3 hours with less than 20% performance loss.
Go/no-go Decision Point #2	5/31/2020	 [1] Completion of system fabrication, integration, and evaluation. [2] Demonstration of the performance of integrated electrolyzer system meeting all the Key Performance Parameters: overall energy efficiency higher than 20% at the system level, continuous operation for more than 3 hours with less than 30% performance loss.

Project Funding Profile

	Budget Period	1 06/01/2017 -	Budget Period	1 2 12/01/2018 -	Total Project					
	11/30	/2018	05/31	/2020						
	Government	Cost Share	Government	Cost Share	Government	Cost Share				
	Share		Share		Share					
Applicant	\$421,099	\$105,275	\$378,901	\$94,725	\$800,000	\$200,000				
Total	\$421,099	\$105,275	\$378,901	\$94,725	\$800,000	\$200,000				
Cost Share	80%	20%	80%	20%	80%	20%				

Anticipated Outcomes

- The feasibility of the proposed approach for reduction of CO₂ emission will be demonstrated.
- Two subsystems, i.e., CO₂ electrolyzer and CO electrolyzer, will be designed, fabricated, and evaluated. The key functions will be demonstrated for the integrated system in the laboratory environment.
- Economic and life-cycle models will be established and assessed using experimental data.
- A Technology Readiness Level 4 (TRL 4) will be reached at the end of project.

Acknowledgements

UDRF, UDRF-SI UDEI, EPSCoR

ACSPRF

NDI, ND

Game Changing Program, EPSCoR

DOE/NETL

Collaborators:

Dion Vlachos, Yushan Yan, Bingjun Xu, John Xiao, Robert Birkmire, University of Delaware Jingguang Chen, Columbia University Ken Burke, NASA Glenn Research Center

Thank you