Increasing the Rate and Extent of Microbial Coal to Methane Conversion through Optimization of Microbial Activity, Thermodynamics, and Reactive Transport

Matthew Fields
Lee Spangler, Al Cunningham, Robin Gerlach
Energy Research Institute at Montana State University

December 9, 2014 Kickoff Meeting
Steven R. Markovich, Project Manager
National Energy Technology Laboratory
Advanced Energy Systems Division
Pittsburgh, PA
Presentation Outline

• **Project Concept and Background**
  • Project objectives
  • Project team roles and responsibilities
  • Tasks/subtasks
  • Key milestones
  • Success criteria at key decision points
  • Deliverables
America has more coal than any other fossil fuel resource. The United States also has more coal reserves than any other single country in the world. In fact, just over 1/4 of all the known coal in the world is in the United States. The United States has more coal than the rest of the world has oil that can be pumped from the ground.

Methane can be formed through the biotransformation of organic matter (including coal and oil) by bacteria and methane producing microorganisms (Methanogens).
Coal or CBM

- Does not release Hg
- Reduced N and S compounds
- Releases less CO\textsubscript{2} than coal

Producing well only lasts 10 years in the PRB
>10,000 gallons H\textsubscript{2}O/well/day
Overall Goal: *Sustainable, Low-Impact, Coal Bed CH$_4$

- Once initial methane production is completed the opportunity exists to enhance production of additional methane by stimulating indigenous microbial populations.

- Research aimed at developing sustainable microbial methane production from coal beds.
  - Microbial Activity
  - Thermodynamics
  - Reactive Transport
MSU CBM Project History

- National Science Foundation, Cold Geobiology, Collaborative Research: Hydrodynamic controls on microbial community dynamics and carbon cycling in coalbeds (PI: J. McIntosh, University of Arizona; co-PIs: M.W. Fields, A.B. Cunningham, MSU)
- Montana Board of Research and Commercialization Technology, Sustainable Coal Bed Methane (CBM) and Biofuel Production (MSU and Montana Emergent Technologies)
- On-going collaborations with U.S. Geological Survey (W. Orem, Reston, VA; A. Clark, Denver, CO)

**Approach**: Multi-disciplinary work that combines microbiology, ecology, engineering, geochemistry, and hydrology to determine constraints on in situ CBM
Coal → Natural Gas (CH₄)

**Activity:** Coal-dependent growth & conversion

**Thermodynamics:** Conditions that promote growth & conversion

**Reactive Transport:** Movement of Nutrients/Organisms/Cross-Feeding

- CO₂, H₂
- Formate, MeOH, Methylamines
- Acetate

---

Sampling: Water vs. Coal Matrix
Bacterial Enrichments – With and Without Coal

Bacterial 16S
No coal

Bacterial 16S
Coal
Archaeal Enrichments – With Coal

Archaeal 16S

- Methanosarcina: 80%
- Methanothrix soengenii: 2%
- Methanospirillum hungatei: 18%

Archaeal mcrA

- Methanosarcina lacustris: 8%
- Methanospirillum hungatei: 2%
- Methanosarcina: 87%
- Methanosarcina 2: 3%
Native Microbial Community of Coal

Flowers-Goodale cores
11 samples analyzed to date

- 3 above coal seam
- 5 within coal seam
- 2 below coal seam
- Drilling fluid
SSU Bacterial rRNA gene sequences

Drilling fluid 357.7 ft. Clay Sand 2 Sand interface Coal interface Coal Coal 2 Coal 2 Coal interface Clay interface Clay 378.4 ft.

Phylum

- Actinobacteria
- Bacteroidetes
- Proteobacteria
- Cyanobacteria/Chloroplast
- Armatimonadetes
- Gemmatimonadetes
- Acidobacteria
- Firmicutes
- Deinococcus-Thermus
- Verrucomicrobia
- Unclassified Bacteria
Lab to Field

Diagram showing the process of using carbon dioxide ($\text{CO}_2$) from a coal mine and algae/microbes to produce lipids and biofuels. The treated water is then re-injected into the aquifer to stimulate additional CH$_4$ production.
Summary of Current MSU Work

Key Findings
- Hydrogenotrophic methanogens are present under non-stimulated laboratory conditions
- Acetoclastic methanogens appear under stimulated laboratory conditions
- Yeast extract enhances CBM production from native PRB microbes when coal is also present
- Coal enriches a diverse bacterial community in the presence of coal
- Coal-dependent populations can be identified
- Increasing sulfate in situ corresponds to decreasing archaeal diversity

Future Plans
- Biochemical parameters limiting coal-dependent methanogenesis
- Thermodynamic and reactive transport in coal systems
- Optimize microbial coal-dependent methanogenesis in column-flow reactors
Presentation Outline

• Project Concept and Background
• Project objectives
• Project team roles and responsibilities
• Tasks/subtasks
• Key milestones
• Success criteria at key decision points
• Deliverables
The parameters that constrain microbial coal conversion to natural gas include many physical, chemical, and biological variables. The project will investigate and determine the impact of surface area, pH, nutrients, and transport on overall methanogenesis. The three main objectives of the project are to:

Objective 1: Determine the chemical and biological parameters limiting methane production from coal.

Objective 2: Develop strategies for the optimization of the MECBM (microbially-enhanced coal bed methane) technology based on thermodynamic and reactive transport considerations.

Objective 3: Scale up laboratory microcosms to optimize microbial coal-to-methane production in column flow reactors.
Task & Subtasks: Summary

Task 1.0 Project Management, Planning and Reporting: In accordance with the PMP

Task 2.0 Characterization of chemical and biological parameters that limit methane production from coal

Subtask 2-1 Assess Surface Area Impacts on Microbial Coal Conversion

Subtask 2-1.1 Surface area impacts on coal colonization and methanogenesis

Subtask 2-1.2 Surface area impacts on coal degradation

Subtask 2-2 Evaluation of the effect of pH and nutrient supplementation on coal-dependent methanogenesis

Subtask 2-2.1 pH effects on coal-dependent methanogenesis

Subtask 2-2.2 Nutrient transport and stimulation

Subtask 2-3 Biological considerations (colonization, degradation, and microbial interactions)

Subtask 2-3.1 Biological considerations (colonization, degradation, and microbial interactions)

Subtask 2-3.2 Microbial interactions and cross-feeding
Task & Subtasks: Summary

Task 3.0 Developing an understanding of the thermodynamic, reaction and transport considerations necessary for technology development and scale-up

Subtask 3-1 Thermodynamics

Subtask 3-2 Reactive transport considerations

Subtask 3-2.1 Subtask 3-2.1 Determination of Reaction Kinetics
Subtask 3-2.2 Determination of Reaction-Transport Relationships

Subtask 3-3 Reactive transport modeling in coal bed cleats

Task 4.0 Scale up laboratory microcosms to optimize microbial coal-to-methane production in column flow reactors

Subtask 4-1 Column reactor design and fabrication

Subtask 4-1.1 Design and fabricate column reactors
Subtask 4-1.2. Develop suitable Oxidation-Reduction Potential conditions

Subtask 4-2 Develop coal-to-methane conversion protocol

Subtask 4-3 Adjust column operation to optimize methane production

Subtask 4-4 Design of field demonstration at the USGS Powder River Test site

Subtask 4-4.1 Design field demonstration project
Subtask 4-4.2 Perform economic analysis
Subtask 4-4.3. Evaluate Potential Ecological Hazards
Subtask 2-1.1 Surface area impacts on coal colonization and methanogenesis.

- Enrichments from field samples (three different coal seams) are in progress to develop inoculum for surface area experiments.

- Chosen particle size ranges based on preliminary results:
  4 fractions, duplicates, w/ and w/o 0.1g/L yeast extract:
  0.1 - 0.3 mm
  0.6 - 1.2 mm
  3.4 – 4.8 mm
  6.3 - 9.5 mm
Subtask 2-2.1 pH effects on coal-dependent methanogenesis.

• Preliminary results have demonstrated that coal has buffering capacity in CBM production water.

• Near-term experiments will include pH determinations in CBM water post-algal growth.

Subtask 2-2.2 Nutrient transport and stimulation. Methods to optimize the use nutrients to produce methane from coal in laboratory biofilm reactors will be developed under this subtask.

• Prototype up-flow column reactors are being tested.

Subtask 2-3.1 Biological considerations (colonization, degradation, and microbial interactions).

Subtask 2-3.2 Microbial interactions and cross-feeding.
**Subtask 3-1 Thermodynamics.** In this task, a spreadsheet based tool that will be created to allow for the calculation of the free energy available for the different methanogenic reactions and for the range of environmental (p, T) and geochemical (concentrations of reactants, pH value) conditions.

<table>
<thead>
<tr>
<th>Reactant/Product</th>
<th>(kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$<em>3$COOH$</em>{(aq)}$</td>
<td>-396.6</td>
</tr>
<tr>
<td>CO$_2$(g)</td>
<td>-394.4</td>
</tr>
<tr>
<td>H$^+$</td>
<td>0</td>
</tr>
<tr>
<td>H$_2$(g)</td>
<td>17.74</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-237.2</td>
</tr>
<tr>
<td>CH$_4$(g)</td>
<td>-50.75</td>
</tr>
<tr>
<td>CH$<em>3$OH$</em>{(l)}$</td>
<td>-166.4</td>
</tr>
</tbody>
</table>

1. **Hydrogenotrophic**

   \[ \text{CO}_2 + 4 \text{H}_2 \rightarrow \text{CH}_4 + 2 \text{H}_2\text{O} \]

2. **Acetoclastic**

   \[ \text{CH}_3\text{COOH} \rightarrow \text{CH}_4 + \text{CO}_2 \]

3. **Methylo trophic**

   (a) \[ 4 \text{CH}_3\text{OH} \rightarrow 3 \text{CH}_4 + \text{CO}_2 + 2 \text{H}_2\text{O} \]

   (b) \[ \text{CH}_3\text{OH} + \text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} \]

   (c) \[ 4 \text{CH}_3\text{R} + 2 \text{H}_2\text{O} \rightarrow 3 \text{CH}_4 + \text{CO}_2 + 4 \text{RH} \]

   (where R can be NH$_2$, SH or similar)

<table>
<thead>
<tr>
<th>Reactant/Product</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$<em>3$COOH$</em>{(aq)}$</td>
<td>7.0E-6 mol</td>
</tr>
<tr>
<td>CO$_2$(g)</td>
<td>1.0E-2 atm</td>
</tr>
<tr>
<td>H$_2$(g)</td>
<td>1E-6 atm</td>
</tr>
<tr>
<td>CH$_4$(g)</td>
<td>8.8E-1 atm</td>
</tr>
<tr>
<td>CH$<em>3$OH$</em>{(l)}$</td>
<td>1E-6 atm</td>
</tr>
</tbody>
</table>

Reactants in red were not measured. It is assumed that they have low activities and therefore a value of 1E-6 was used.
Subtask 3-2 Reactive transport considerations

Subtask 3-2.1 Determination of Reaction Kinetics.
• Establish baseline conditions in Objective 2.

Subtask 3-2.2 Determination of Reaction-Transport Relationships.
• Establish reactors in Task 4.0.

Subtask 3-3 Reactive transport modeling in coal bed cleats
• The model will be calibrated and validated using the batch and column experiments described in tasks 2 and 4 and will ultimately be used as the basis for the field scale demonstration preparations.
Task 4.0 - Scale up laboratory microcosms to optimize microbial coal-to-methane production in column flow reactors.

Subtask 4-1.1 Design and fabricate column reactors.

• Prototype reactors are being tested.

Subtask 4-1.2 Develop suitable Oxidation-Reduction Potential (ORP) conditions in reactors.

Subtask 4-2 Develop coal-to-methane conversion protocol.

Subtask 4-3 Adjust column operation to optimize methane production

Subtask 4-4.1 Design field demonstration project.

• Baseline characterization of USGS field site in collaboration with USGS.

Subtask 4-4.2 Perform economic analysis.

Subtask 4-4.3 Evaluate Potential Ecological Hazards.

• Baseline microbial community characterization is underway with Diffusive Microbial Samplers.
Deliverables

Periodic topical and final reports will be submitted in accordance with the “Federal Assistance Reporting Checklist”. A Project Management Plan (PMP) shall be maintained and submitted, with the initial PMP due 30 days after award. Revisions to the PMP shall be submitted, as requested, by the Project Officer.

The techno-economic analysis and summary report on the evaluation of potential ecological hazards will be provided to the Project Officer as stand-alone topical reports. These reports should be submitted within 30 days of the completion of their associated tasks and/or sub-tasks.
<table>
<thead>
<tr>
<th>Milestone Number</th>
<th>Budget Period</th>
<th>Task</th>
<th>Fiscal Year &amp; Quarter</th>
<th>Milestone Description</th>
<th>Planned Completion</th>
<th>Verification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>FY2015 Q1</td>
<td>Updated Management Plan</td>
<td>11/30/2014</td>
<td>Project Management Plan file</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>FY2015 Q1</td>
<td>Kickoff meeting</td>
<td>12/09/2014</td>
<td>Presentation</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4.1</td>
<td>FY2015 Q2</td>
<td>Complete coal-to-methane flowing column design and fabrication</td>
<td>03/31/2015</td>
<td>Progress Report</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3.1</td>
<td>FY2015 Q3</td>
<td>Complete development of a spreadsheet tool to predict rate and extent of methanogenesis</td>
<td>06/30/2015</td>
<td>Progress report</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2.1</td>
<td>FY2016 Q2</td>
<td>Complete experiments on surface area impacts on coal colonization and methanogenesis</td>
<td>03/31/2016</td>
<td>Progress report</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4.4</td>
<td>FY2016 Q3</td>
<td>Complete design recommendations field pilot project at the USGS Powder River test site</td>
<td>06/30/2016</td>
<td>Progress report</td>
</tr>
</tbody>
</table>
This is a “single phase” project intended to evaluate and further develop the potential for the commercial implementation of microbially enhanced coal bed methane (MECBM) production through a combination of laboratory experiments, modeling, scale-up and field test design.

There are no “go/no-go” decision points associated with the project schedule. At the conclusion of the project the results will be evaluated to determine overall effectiveness of nutrient amendment, geochemical manipulation, and engineering strategies to enhance the rate and extent of biological coal-to-methane conversion in the field.

Our target metric is to achieve at least a three-fold increase in methane production from coal that has undergone nutrient stimulation relative to unamended controls. The overall success of project results will be evaluated with the help of feedback from all project collaborators which include MSU, MET, the Reston Office of the U.S. Geological Survey as well as DOE-NETL.
## Schedule Budget

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>Budget Period 1 Costs</th>
<th>Budget Period 2 Costs</th>
<th>Total Costs</th>
<th>Project Costs %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Personnel</td>
<td>$149,535</td>
<td>$102,824</td>
<td>$252,359</td>
<td>40.4%</td>
</tr>
<tr>
<td>b. Fringe Benefits</td>
<td>$43,412</td>
<td>$35,264</td>
<td>$78,676</td>
<td>12.6%</td>
</tr>
<tr>
<td>c. Travel</td>
<td>$8,000</td>
<td>$8,000</td>
<td>$16,000</td>
<td>2.6%</td>
</tr>
<tr>
<td>d. Equipment</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
</tr>
<tr>
<td>e. Supplies</td>
<td>$33,090</td>
<td>$23,637</td>
<td>$56,727</td>
<td>9.1%</td>
</tr>
<tr>
<td>f. Contractual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-recipient</td>
<td>$25,000</td>
<td>$25,000</td>
<td>$50,000</td>
<td>8.0%</td>
</tr>
<tr>
<td>Vendor</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
</tr>
<tr>
<td>FFRDC</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total Contractual</td>
<td>$25,000</td>
<td>$25,000</td>
<td>$50,000</td>
<td>8.0%</td>
</tr>
<tr>
<td>g. Construction</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
</tr>
<tr>
<td>h. Other Direct Costs</td>
<td>$17,400</td>
<td>$8,700</td>
<td>$26,100</td>
<td>4.2%</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td>$276,437</td>
<td>$203,425</td>
<td>$479,862</td>
<td>77%</td>
</tr>
<tr>
<td>i. Indirect Charges</td>
<td>$78,138</td>
<td>$67,000</td>
<td>$145,138</td>
<td>23.2%</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$354,575</td>
<td>$270,425</td>
<td>$625,000</td>
<td>100%</td>
</tr>
</tbody>
</table>