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Motivation – applications of turbines  
 Turbine engines – key for energy generation and propulsion  
 

 

2007 Energy Generation Statistics (DOE)  

>70% 
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Motivation – need for wireless strain sensors  
 Parts subjected to severe strain/stress in extreme environments  
 Moving parts/hidden areas – need wireless 
 High temperatures – need passive  
 Predict the failure  
 Reduce unnecessary out-of-service examination and 

replacement  
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Strain sensors-State of the Art 
 
  Optical-Based Non-Contact Sensors  

 Lack of necessary accuracy 
 Not robust in harsh environments 

  Strain gage 
 Piezoresistivity – changes in resistivity with strain/stress 
 Cannot be wireless 

 Piezoelectric based load cell 
 Can be wireless 
 Piezoelectric materials cannot be used to high temperatures 
 Need power source 

 Capacitive based pressure sensor 
 Can measure pressure induced strain/stress 
 Cannot measure parts strain/stress 
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  Overall Objective  

Develop RF resonator-based wireless passive polymer-derived 
ceramic strain/stress sensors 

 Scientific Goals 
 Develop piezo-dielectric polymer-derived ceramics (p-PDCs) 
 Design and fabricate resonator sensors 
 Characterize the sensors in extreme environments 

 

Passive Ceramic Sensor 

Objectives 

Passive Ceramic Sensor 

f0(S) 
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Background – polymer-derived ceramics 
Precursor Polymer 

devices Ceramic devices 
Micro 

fabrication 
Pyrolysis 

 Excellent high-temperature resistance 
 High thermal stability 
 High oxidation/corrosion resistance 
 

 Microfabrication capability 
 

 Unique electric/dielectric behavior  
 Resistivity varied in a large range 
 High piezoresistivity 
 High piezo-dielectricity  
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Schedule and Timeline 
10/2011-09/2012 10/2012-09/2013 10/2013-09/2014 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

Task 1: Research 
Management Plan 

Task 2: Materials 
development 

Task 3: Sensor design 
and Fabrication 

Task 4: Sensor testing 

Milestone Planned Completion Date Verification Method 

1: Finish room temperature material selection  06/30/2012 

2: Finish first run of sensor design 09/31/2012 

3: Finish final material selection  03/31/2013 

4: Finish final sensor design 09/31/2013 

5: Sensor fabrication 12/31/2013 

6: Sensor characterization 09/30/2014 
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Accomplishments 
 Material synthesis 

 Precursor synthesis 
 
 
 
 
 
 
 
 
 
 
 

 Precursor synthesis 
 

Name MA ASB 819 VL20 PVN 

S-1 2 wt% 5 wt% 5 wt% 78 wt% 10 wt% 
S-2 2 wt% 5 wt% 5 wt% 68 wt% 20 wt% 
S-3 2 wt% 5 wt% 5 wt% 58 wt% 30 wt% 
S-4 2 wt% 10 wt% 5 wt% 53 wt% 30 wt% 
S-5 2 wt% 20 wt% 5 wt% 43 wt% 30 wt% 

• Polysilazane (VL20) – main precursor 
• Phenylbis (2, 4, 6-trimethylbenzoyl) phosphine oxide (819) -- photo initiator  
• Methacrylic Acid (MA) – photo enhancer  
• Aluminum-tri-sec-butoxide (ASB) – precursor for aluminum) 
• Poly (melamine-co-formaldehyde) acrylated solution (PVN) – precursor for nitrogen)  

Samples obtained at 1000, 1100, 1200 and 1300oC for each composition   
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Accomplishments 
 Property characterization 

 Frequency-dependent dielectric constant 



Accomplishments 
 Property characterization 

 Frequency-dependent dielectric loss 



Accomplishments 
 Property characterization 

 Frequency-dependent resistivity 



Accomplishments 
 Property characterization 

 Comparison of dielectric constant  



Accomplishments 
 Property characterization 

 Comparison of dielectric loss  



Accomplishments 
 Property characterization 

 Comparison of resistivity 
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Accomplishments 
 Property characterization 

 Pressure-dependent dielectric constant 
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Accomplishments 
 Property characterization 

 Pressure-dependent dielectric loss 



Accomplishments 
 Property characterization 

 Comparison of dielectric constant  



Accomplishments 
 Property characterization 

 Comparison of dielectric loss  



Future work 
 Material development 

 Finalize room-temperature material characterization 
 Design, synthesize and characterize optimal materials  

 

 Design and fabricate sensors 
 Design the resonator based strain sensors 
 Fabricate the designed sensors 

 

 Sensor characterization 
 Pack the sensor for testing 
 Test the sensors in different temperatures 

 



Summary 
 Polymer-derived ceramics possess necessary properties for making wireless, 

passive strain/stress sensors for high-temperature applications. 
 
 We have finished materials synthesis and have started material property 

characterization. 
 

 Our preliminary results showed that the dielectric properties of PDCs can 
be tailored in a large range.  
 

 The dielectric constant varied significantly with applied stress, indicating 
the sensor could have very high sensitivity. 
 

 The R&D progress follows the proposed schedule.   
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