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Use of thermal property measurement to

evaluate coatings

+ Usage:
High_ﬁ
Low
Development Production Service
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* Phase of Photo-Thermal Emission Analysis (PopTea)
— Principles
— Strengths and limitations
» Advances made to the measurement
— 2D-heat spreading model for thick coatings
— Subsystem model for coated structures with thin walls
» Advances in characterization of TBCs
— High temperature evolution of coatings
— Impact of surface deposits of foreign material
— Impact of infiltration of foreign material
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Phase of Photo-Thermal
Emission Analysis (POPTEA)

+ Whatis it? -
— Nondestructive measurement IR Detector

of coating (thermal) properties AN l |

* How does it work?
— Interrogates thermal emission of
coating heated with modulated laser
— Frequency domain
— Phase of emission dependent on heat
transport through coating
— No sample preparation needed

Modulator
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Heat transfer 1-D (thin coat) model

Phase of temperature field has ...

1 controlled dependency ...
Thermal penetration: . Je,, 1exf)
(laser frequency) L él laser

radiation

3 additional dependencies ...

. )
Laser penetration: A= Lf

Interface diffusivity contrast: «,, = [[Z]]b 2 thermal
properties ...

- [lkpCl,,
Interface effusivity contrast: 7= [[k;’T]”‘ [k].,.. [PC].,.
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Phase detection model (radiation model)

Detectol
 Optically thin coating (a;L<<1) /\
- for interrogation at S5um
é thermal
|S|on

i g e

2O

emmision=X, I, ,(1) +4J~11M(z)dz
—_ Lr—’

from

interface from topcoat

* Phase dependence on one variable:

£, , < substrate
Y =—

a,L < coating
| S ——

sources of emission

UCSB 2010 UTSR Workshop - Penn State Univ. / NETL — University ParlM
T

8

10/28/2010



Quantitative
Measurements
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PopTea, advantages

» No calibration of q for laser heating

» Front surface interrogation

» Conductivity and heat capacity measurements possible
» No optical coatings

+ Measurements can be done on engine hardware
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PopTea, limitations

* Requires substrate backing
— as a heat sink
— for thermal contrast (to determine of coating effusivity)

» For k and p Cp measurements thermal contrast with
substrate can not be too large
(for example aluminum is a bad substrate material)

» Coating thickness is required for thermal property
measurements
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Thick coatings
Condition for 2-D spreading
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¢, (thermal penetration)

What is important ? =% D/(_, (notD/L)

_ |lal,, < substrate diffusivity

N\ 2x f <« 1/timescale provided by laser
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Thick coatings
Condition for 2-D spreading
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Differential PopTea measurements

» two measures of thermal penetration
— one in the coating
— one in the substrate material

g — 6Ksub
sub coat
o

coat

» For typical coating-superalloy combinations, this
multiplier might range between 2 and 3.

» The assumption of a semi-infinite substrate material
requires the substrate material be at least three times
as thick and the TBC.
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Differential PopTea measurements

» Subsystem model:

R, |’ \km } a,
AR 4 “
PO ] |JkpO) |
TBC | Substrate i |

S  —

L L, Subsystem
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Differential PopTea measurements

Three configurations of the PopTea measurement.

‘ (i) TBC/Sub/SubSys ‘ (ii) Sub/SubSys ‘ (i) Standard
RN ~ N
. heat 1\ heat
| . heat |
| S B AN Y Yo
— TBC — oy TBC —
i substrate v i substrate L““”i substrate
| void | material-1 L, | void | material-1 \ .
—> | ‘ material-2
1 & 4 1 [
‘ material -2 ‘ material-2 ‘
! ‘ substrate | material-1 | material-2
‘ ‘ L(m) 0.0014 0.003
k (W/m2/K) 9.8 180 15
rCp (J/kg/K) 3.6 x10° 2.4 x10° 3.8 x108
R1 (m) 0.0033 |
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Differential PopTea measurements
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Fit for configuration (ii) o g
04 Measurement results
dPopTea PopTea
0.2 ‘ ‘ @) &b) (©
01 f 1 a (m?/s) 2.75x107 2.78 x107
coat
k (W/m?/K) 0.810 0.885
pC (J/kg/K) 2.95 x10°8 3.19 x10°8
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High temperature evolution of coatings

» How do coating thermal properties
change with high temperature
exposure?

» 7YSZ EB-PVD TBCs deposited on
platinum-modified nickel-aluminide
coated single crystal superalloys
provided by Howmet Corporation

« Thermal cycling between room
temperature and 1150 C until failure.

» Each cycle consisted of a 1-h
exposure and 10-min cooling to room
temperature. Heating and cooling
rates ~ 200 C/min.
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Various stages of thermal cycling

Before visible . |

delamination
Measurement s

Localized
delamination wvisibl

250 Cycles 300 Cycles 350 Cycles

+ Infrared camera images showing progression of interface delamination
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Evolution of thermal properties
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+ Catastrophic spallation of the coating was preceded by a small
(apparent) drop in the coating thermal conductivity/diffusivity.

UCSB 2010 UTSR Workshop - Penn State Univ. / NETL — University ParlM
T

24

12



Evolution of thermal properties

» Evolution of thermal properties
— Morphology of as-deposited condition (a) and after 350 1 h

cycles at 1150C (b).
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Evolution of thermal properties
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No significant change in density with heat treatment

changes in pore geometry (not volume fraction)

Implies changes in the thermal diffusivity / conductive result from
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Evolution of thermal properties
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« The width of the Raman bands correlates with both thermal
diffusivity and thermal conductivity.

— suggests the increase in thermal conductivity may also be influenced by a
decreased in phonon scattering by defects
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Evolution of thermal properties
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« X-ray diffraction shows 25% of the coating had transformed to the
cubic phase

= Taking Kieragona = 3-0 W/m/K and K = 2.6 W/m/K, the bulk conductivity of
this mixture (75% tetragonal + 25% cubic zirconia) is calculated to be 2.9
W/m/K.
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Isothermal aging at 1150 C
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Isothermal aging at 1150 C
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Foreign surface deposits

New Optical Model

(Emission) A i (Heating)

AR A 22

Foreign deposit —>

£,
L= o
T a,L
s Eia
1A=
a,L
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Foreign surface deposits 2.2 ' '
2l thoyiy w/o surface |
' deposition | >
Test specimen: gl @ éo i(1)7 |
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nickel-based superalloy 16k \ 0,0 |
1.4} .
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Foreign surface deposits 2.2 ' '
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' N deposition =
L an. L 2,=0
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Foreign surface deposits

Test specimen:
7YSZ EB-PVD ~150 um on
nickel-based superalloy

Change in results as a
consequence of surface
deposit:

thermal diffusivity: 0%
thermal conductivity: 15%
volume specific heat: 15%

2.2 . .
2ol R 2 w/o surface |
' N deposition >~
2, =0
1.8F ¥, =17 ]
A=0.19
1.6t 0,=0 .
1.4F .
1.0t w/ surface S
0.4 : :
0.01 0.1 1.0 10.C
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Thin Carbon deposit

Test specimen:

7YSZ APS ~ 300 um on
nickel-based superalloy
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Thick Carbon Deposit
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Bilayer Model

EBVD Sample
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PopTea Model Bilayer Model
n 0 0.003 0.017 0.033 0.017 0.033
a(x107) 3.55 3.52 3.47 3.36 3.54 3.57
k 0.84 0.91 0.99 0.98 0.94 0.93
pC,(x 10) 2.36 2.59 2.85 291 2.65 2.61
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )

* Whatis the impact of CMAS
infiltration on thermal
properties of coating

* Coating: 300 um 7% wt. yttria-
stabilized zirconia air plasma

spray
Composition of CMAS:
Materials CaO MgO ALO; Sio,
Mol % 35 10 7 48
Cp (J/kg/K) 806.9 1000.9 864.1 8154
Cp (/kg/K) 835
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )

CMAS infiltration:
Before Infiltration After Infiltration — CMAS disc 80 pm thick and
1 cm diameter
— Heated to 1300°C to melt
CMAS

— Cooled slowly (2°C/min) for
temperatures below 1000°C

CMAS Infiltration
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )

Uninfiltrated Infiltrated Transition

Infiltrated Spot (~1cm)

1” TBC Coupon
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )
Measurement Measurement Measurement
2)
M Annealed )
Baseline 1300°C Infiltrated
o (m?/s) 4.46x 107 4.46x 107 8.46x 107
k (W/m/K) 0.91 0.88 2.09
pCp(J/Cm3/K) 2.04 1.94 2.47
C, J/kg/K) 475 475
p (kg/m3) 4300 4100
1) 27% 31%
CMAS Infiltration
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Effective medium theory

Measured coating porosity

2-6 T T T T
+— Dense 7YSZ
o4t i conductivity
v RO
E
§§ 22r Measured infiltrated
35 +— coating conductivity
©35
33 207
g5
=3
ET 18}
2
161 Keyus =0.79 W/m/k
ko, =2.50 W/n/k
1.4 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5

Coating porosity (%)
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Conclusion (CMAS)

» Effect of the CMAS infiltration can be measured on
thermal barrier coatings

» Thermal conductivity more then doubled
» Heat capacity increased by over 20%

+ Effective medium theory suggests through coating
connectivity of CMAS is important to the large rise in
thermal conductivity
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Thanks
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