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Use of thermal property measurement to 

evaluate coatings

• Usage:

Development Production Service
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Outline

• Phase of Photo-Thermal Emission Analysis (PopTea)

– Principles

– Strengths and limitations

• Advances made to the measurement

– 2D-heat spreading model for thick coatings 

– Subsystem model for coated structures with thin walls 

• Advances in characterization of TBCs

– High temperature evolution of coatings

– Impact of surface deposits of foreign material

– Impact of infiltration of foreign material
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Phase of Photo-Thermal 
Emission Analysis (PoPTEA)

• What is it?
– Nondestructive measurement

of coating (thermal) properties

• How does it work?
– Interrogates thermal emission of 

coating heated with modulated laser

– Frequency domain

– Phase of emission dependent on heat 
transport through coating

– No sample preparation needed

Modulator

Laser
CO2

TBC

Substrate

IR Detector
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Heat transfer 1-D (thin coat) model

Phase of temperature field has …
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Phase detection model (radiation model)
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• Phase dependence on one variable:

• Optically thin coating (aλL<<1)

- for interrogation at 5µm
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Theory

Models

& Measurements

Quantitative

opt

L

δ
Λ =

[ ]

[ ]

sub

coat

k C

k C

ρ
γ

ρ
=

[ ]

[ ]

sub
sub

coat

a
α

α
=

1,

1
a L

λ

λ

ε
Σ =

thermal penetration

fit

measurements

0.01 0.1 1 10
0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

time

laser emission
φ

E
m

is
s
io

n
 P

h
a

s
e

 L
a

g
 (

ra
d

.)

1.0

2010 UTSR Workshop - Penn State Univ. / NETL – University Park PA
10

Outline

• Phase of Photo-Thermal Emission Analysis (PopTea)

– Principles

– Strengths and limitations

• Advances made to the measurement

– 2D-heat spreading model for thick coatings 

– Subsystem model for coated structures with thin walls 

• Advances in characterization of TBCs

– High temperature evolution of coatings

– Impact of surface deposits of foreign material

– Impact of infiltration of foreign material



10/28/2010

6

2010 UTSR Workshop - Penn State Univ. / NETL – University Park PA
11

PopTea, advantages  …

• No calibration of q for laser heating

• Front surface interrogation 

• Conductivity and heat capacity measurements possible

• No optical coatings

• Measurements can be done on engine hardware
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PopTea, limitations

• Requires substrate backing

– as a heat sink

– for thermal contrast (to determine of coating effusivity)

• For k and ρ Cp measurements thermal contrast with 
substrate can not be too large

(for example aluminum is a bad substrate material)

• Coating thickness is required for thermal property 
measurements
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Condition for 2-D spreading
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Differential PopTea measurements

• two measures of thermal penetration 

– one in the coating 

– one in the substrate material 

• For typical coating-superalloy combinations, this 
multiplier might range between 2 and 3.  

• The assumption of a semi-infinite substrate material 
requires the substrate material be at least three times 
as thick and the TBC. 
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Differential PopTea measurements

• Subsystem model:
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Differential PopTea measurements

19
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(i) TBC/Sub/SubSys (ii) Sub/SubSys (iii) Standard 

Three configurations of the PopTea measurement.
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1
L
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substrate material-1 material-2

L (m) 0.0014 0.003 ---

k (W/m2/K) 9.8 180 15

rCp (J/kg/K) 3.6 x106 2.4 x106 3.8 x106

R1 (m) --- 0.0033 ---
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Differential PopTea measurements

20

0.1 1
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fit for configuration (i)

Fit for configuration (ii)

coat
ℓ

dPopTea

(a) & (b)

PopTea

(c)

(m2/s) 2.75 x10-7 2.78 x10-7

(W/m2/K) 0.810 0.885

(J/kg/K) 2.95 x106 3.19 x106

α

k

Cρ

Measurement results



10/28/2010

11

2010 UTSR Workshop - Penn State Univ. / NETL – University Park PA
21

Outline

• Phase of Photo-Thermal Emission Analysis (PopTea)

– Principles

– Strengths and limitations

• Advances made to the measurement

– 2D-heat spreading model for thick coatings 

– Subsystem model for coated structures with thin walls 

• Advances in characterization of TBCs

– High temperature evolution of coatings

– Impact of surface deposits of foreign material

– Impact of infiltration of foreign material

2010 UTSR Workshop - Penn State Univ. / NETL – University Park PA
22

High temperature evolution of coatings

22

• How do coating thermal properties 

change with high temperature 

exposure?

• 7YSZ EB-PVD TBCs deposited on 

platinum-modified nickel-aluminide 

coated single crystal superalloys 

provided by Howmet Corporation 

• Thermal cycling between room 

temperature and 1150 C until failure.

• Each cycle consisted of a 1-h 

exposure and 10-min cooling to room 

temperature. Heating and cooling 

rates ~ 200 C/min. 
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Various stages of thermal cycling 

23

• Infrared camera images showing progression of interface delamination
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Evolution of thermal properties

• Catastrophic spallation of the coating was preceded by a small 

(apparent) drop in the coating thermal conductivity/diffusivity.
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Evolution of thermal properties

• Evolution of thermal properties

– Morphology of as-deposited condition (a) and after 350 1 h 

cycles at 1150C (b).
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Evolution of thermal properties

26

• No significant change in density with heat treatment  

• Implies changes in the thermal diffusivity / conductive result from 

changes in pore geometry (not volume fraction) 
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Evolution of thermal properties

27

• The width of the Raman bands correlates with both thermal 

diffusivity and thermal conductivity. 

– suggests the increase in thermal conductivity may also be influenced by a 
decreased in phonon scattering by defects
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Evolution of thermal properties

28

• X-ray diffraction shows 25% of the coating had transformed to the 

cubic phase

– Taking ktetragonal = 3.0 W/m/K and kcubic = 2.6 W/m/K, the bulk conductivity of 
this mixture (75% tetragonal + 25% cubic zirconia) is calculated to be 2.9 
W/m/K.
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(100 hrs)

(10  hrs)

Isothermal aging at 1150 C
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(100 hrs)

(10  hrs)

Isothermal aging at 1150 C
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New Optical Model
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Change in results as a 

consequence of surface 

deposit:

thermal conductivity: 15%

volume specific heat: 15%
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0
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Thin Carbon deposit

Test specimen:

7YSZ APS ~ 300 µm on 

nickel-based superalloy
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Thick Carbon Deposit

37
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Bilayer Model

38

EBVD Sample

PopTea Model Bilayer Model

η 0 0.003 0.017 0.033 0.017 0.033

α ( × 10-7) 3.55 3.52 3.47 3.36 3.54 3.57

k 0.84 0.91 0.99 0.98 0.94 0.93

ρCp ( × 106) 2.36 2.59 2.85 2.91 2.65 2.61
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )

• What is the impact of CMAS 

infiltration on thermal 

properties of coating

• Coating: 300 µm 7% wt. yttria-

stabilized zirconia air plasma 

spray

Composition of CMAS:

Materials CaO MgO Al2O3 SiO2

Mol % 35 10 7 48

Cp  (J/kg/K) 806.9 1000.9 864.1 815.4

Cp  (J/kg/K) 835

CMAS
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )

• CMAS infiltration:

– CMAS disc 80 µm thick and 
1 cm diameter

– Heated to 1300ºC to melt 
CMAS

– Cooled slowly (2ºC/min) for 
temperatures below 1000ºC 
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )
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Infiltration of CMAS
(Calcium-Magnesium-Aluminum-Silicates )

Measurement 

(1)

Baseline

Measurement 

(2)

Annealed 

1300ºC

Measurement 

(3)

Infiltrated

α (m2/s) 4.46 x 10-7 4.46 x 10-7 8.46 x 10-7

k (W/m/K) 0.91 0.88 2.09

ρCp(J/cm3/K) 2.04 1.94 2.47

Cp (J/kg/K) 475 475

ρ (kg/m3) 4300 4100

φ 27% 31%
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Effective medium theory
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Conclusion (CMAS)

• Effect of the CMAS infiltration can be measured on 
thermal barrier coatings

• Thermal conductivity more then doubled

• Heat capacity increased by over 20%

• Effective medium theory suggests through coating 
connectivity of CMAS is important to the large rise in 
thermal conductivity
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