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itical Unanswered Questions

* What is the effect of increased LE radius on
deposition?

* What is the effect of increased inlet turbulence on
deposition?

* What is the effect of roughness on film cooling?

* What is the effect of film cooling on deposition?

....requires unique test facilities!
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*Phase 1: Influence of Leading Edge
Radius on Deposition Rates

*Phase 2: Influence of Vane Inlet
Turbulence on Deposition Rates

*Phase 3: The Mitigating Effect of
Film Cooling on Deposition



~Phase 1: Deposition and Leading Edge Radius

e Validate use of faired cylinder to model vane LE
deposition
* Study deposition as a function of LE radius

* Provide deposition surface maps to UND for wind
tunnel testing




ase 1: Deposition and Leading Edge Radius

 Validate use of faired cylinder to model vane LE
deposition
e Study deposition as a function of LE radius

* Provide deposition surface maps to UND for wind
tunnel testing
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Generate elevated inlet turbulence & temperature non-uniformities
with dilution jets in TuRFR

Study deposition for various turbulence levels and LE geometries

Develop in-situ deposit thickness and surface temperature
measurement capability

Provide deposition surface maps to UND for wind tunnel testing
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* Generate elevated inlet turbulence & temperature non-uniformities
with dilution jets in TuRFR

* Study deposition for various turbulence levels and LE geometries

® Develop in-situ deposit thickness and surface temperature
measurement capability

* Provide deposition surface maps to UND for wind tunnel testing

In-Situ Measurement
Rangefinder + IR camera
+ surface thermocouples
= deposit thickness and
conductivity

(Ref: Baxter et al., Sandia)

IR Camera
Image

Laser Diagnostics
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ase 3: Deposition and Film Cooling

* Study film cooling effects on LE deposition with faired
cylinders

e Study film cooling effects on pressure surface deposition
with vane hardware

* Provide deposition surface maps to UND for wind tunnel
testing

Bituminous Coal Ash at 1900F
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» What is the impact of increasing leading edge diameter with aggressive
combustor turbulence on heat transfer?

» What is the combined influence of realistic roughness, larger leading
edges and turbulence on heat transfer?

* How quickly does realistic roughness and turbulence dissipate
downstream film cooling? What is the resulting effect on downstream
heat transfer?

e Can we manage the heat load on the leading edge of vanes using
internal cooling with larger leading edge diameter and TBC coatings?



» Generation of a wide range of relevant turbulence conditions.

* |solating the influence of leading edge diameter on HT.

e Generation of realistically rough heat transfer surfaces.
 Acquisition of turbulent spectra and boundary layer measurements.

e Acquisition of local and full surface heat transfer and film cooling
measurements.

e Acquisition of internal cooling and pressure drop data



UND

A range of turbulence conditions will be generated for the heat transfer and film
cooling study. These conditions will include a low turbulence condition, three grid
generated turbulence conditions and three aerocombustor turbulence conditions.

Grid turbulence will be generated with a small and a large grid. Both grids will be
positioned 10 mesh lengths upstream from the cylinder leading edge. The small
grid will also be positioned about 30 mesh lengths upstream to produce a lower

level turbulence.

Aero-combustor turbulence will be generated with the existing mock combustor
which has a 2 to 1 contraction nozzle. A second level will be generated using this
mock combustor with a decay spool. A third level will be generated with a new
smaller mock combustor with no contraction.

Turbulence Generator Tu Lu (cm) |Uinf (m/s) |Uinf (m/s) |Uinf (m/s) JUinf (m/s)
AeroCombustor (no contraction) 0.28 3.7 15 10 B 2.5
AeroCombustor (2:1 area ratio contr.) 0.14 7.25 20 10 5 2.5
AeroCombustor (with decay spool) 0.09 9 20 10 5 2.5
Grid (bar=1.27cm, mesh = 6.35 cm) 0.08 3.5 20 10 5 2.5
Grid (bar=.635 cm, mesh = 3.175 cm) 0.08 Tirb 20 10 5 2.5
Grid (bar=.635 cm, mesh = 3.175 cm) 0.05 2 20 10 5 2.5
Low Turbulence 0.007 5 20 10 5 25




The two leading edge cylinders have 10.16 cm and 40.64 cm diameter leading edge
regions over +/- 30°. The downstream afterbodies are designed to keep the flow
accelerating over the entire heat transfer surface.
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The stagnation region of two leading edge cylinders exhibit a strong linear
acceleration. Locations for full coverage film cooling, downstream of the stagnation

region, will chosen based on industry recommendations.

45

40

35

Velocity (m/s)
= [HN () N w
(Sa (@) ol (@) o1 (@)

(@)

O%

-
o002

e

e —

M

/
/
i/

— 16 Inch Diameter Leading Edge ||

——4 Inch Diameter Leading Edge

0.1

0.2

03 04 05 06

07 08 09 1 1

Surface Distance (m)

1.2



A—EFAE 0N RO
.....

¥R Stereo Ilthography molds to repllcate
TuRFR facility surfaces and then applied to heat
transfer foils as shown pictured right.

Vane surface Stanton number data show that
roughness causes early transition but in this case
has no impact before transition. Literature data
(Bunker) show direct augmentation on leading
edge at high Reynolds numbers.
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~ Internal

Double wall cooling arrange-
ments offer more surface area
for internal cooling. However,
solidity of pedestals needs to
be high enough to mitigate
stresses and transfer thermal
energy between inner and
outer walls. For longer arrays
both pressure drop and local
coolant to wall temperatures
will need to be managed.
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