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Hemispherical reflectivity of EB-PVD 7YSZ TBC produced by the (a) “in and out” and (b) “shutter” methods after 960°C = .
exposure for 20 hours and (c) showing the percent improvement for each multilayer method. Reflectivity increases in both ,

: ~ methods with increasing number of layers, thus reducing radiative (photon) heat transfer in the TBC. This phenomena is
attributed to an increase in strain fields and stable micro-porousity.

Diagram showing (a) typical standard vapor phase
columnar microstructure and (b) modified columnar
microstructure with multiple interfaces. The additional
interfaces interrupt the formation of a large grained
columnar crystallographic structure.

Thermal Cycling Testing Conclusions

TBC’s undergo large and frequent temperature changes during the _ : : :
operation of gas turbine engines which creates internal residual Periodic vapor flux Interruption
stress. If stress caused by thermal cycling becomes too large, by the “shutter” method
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TBC: Failure Success Thermal reflectance increased
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SEM microgr
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