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Goal

Develop integrated, low-cost methods to
assess fate of CO, injected into various
geologic reservolirs.

Demonstrate the applicability of these
methods at one of DOE’s Phase 3 carbon
sequestration test sites.
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Supporting Cast

5 Students

INSAR
— TBD

GPS
— TBD

Seismology
— TBD

Atmospheric Chemistry
— TBD

Fluid Modeling and Rock Interactions
— Caitlin Augustin



Three Components

Space Geodesy (InSAR, GPS)

Measure surface deformation at selected test site

Seismology

Measure Vp/Vs at selected test site

Geochemistry

— Measure key geochemical parameters at test site

Integrate data from all three areas in a numerical model
that includes geochemical reactions, reservoir geometry,
and pressure changes in reservoir associated with CO,

pumping



Space Geodesy (GPS/InNSAR)

Principle: adding CO, to reservoir increases pressure,
leads to measurable uplift; short term leakage leads to
subsidence

*New tools (GPS and InSAR) for deformation
measurement (last one-two decades)

*GPS (point positions, high temporal resolution) and
INSAR (high spatial resolution) provides ideal combination
for long term monitoring of sequestration sites

University of Miami has significant ability using these
methods particularly for monitoring deformation from the
emplacement of fluids in volcanic events and earthquakes
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High Precision Geodesy with GPS

The Global Positioning System (GPS) Range to four or more satellites
21 Satellites gives 3D position + clock error

6 orbit planes Precise phase and pseudo- range
data estimates range between
satellite and ground point

Geophysical models estimate and
correct major error sources
(orbits, troposphere)

Dual frequency gives first order
ionosphere correction




How it works: InSAR

Transmit a pulse of e-m radiation (typically microwave-
band) and measure amplitude and phase of returns

Amplitude (intensity) is a function of the
roughness of the ground

\(
’ \ Phase is a function of distance from
satellite to ground (‘range’)

780 km

Satellite: ERS-2 (1995-)
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How it works: InSAR

Pass 2

phase shift due to
ground motion
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Image A - 12 August 1999

Interferogram =
Phase A - Phase B

“Change map’

Remove phase from
topography
satellite positions
earth curvature

Image B - 16 September 1999 1
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Space Geodesy:Application
Examples

New Orleans example.combined GPS
and INnSAR for “absolute” velocity;
Forensics example; why did levees fail?

Tungarahua example: non-standard
shallow source (analogous to CO,
problem?)

Bakersfield example:enhance recovery,
shallow source (analogous to CO,
problem?)
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New Orleans

Legend
NEW ORLEANS

-28.60--17.60
-17.59--13.54
-13.53--10.20
-10.19--8.90
-8.89 --8.10
-8.09 --7.50
-7.49 - -7.00
-6.99 - -6.60
-6.50 - -6.30
-6.20 - -6.00
-5.98 --5.70
-5.69 - -5.50
-5.49 --5.30
-5.20--5.10
-5.00 - -4.90
-4.89 --4.70
-4.69 - -4.50
-4.49 - -4.30
-4.20 --4.00
-3.99--3.70
-3.69 - -3.40
-3.39--3.10
-3.09 --2.80
-2.79 --2.40
-2.39 --1.80
-1.79-10.30

Space Geodesy and Geochemistry applied to the Monitoring, Verification of Carbon Capture and Storage- Dixon, Swart, Amelung, Lin & Riemer University Miami




Tungarahua
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Figure 3. ALOS Interferograms spanning December 2007 - March 2008. a) Stack of two independent interferograms from
an ascending line of sight; b) Single interferogram from a descending line of sight. Both interferograms are re-wrapped
to 2.8cm fringes to make the deformation pattern clearer. c,d) deformation decomposed into east and north components
respectively based on the assumption that the northward component has a negligible contribution to the line-of-sight
deformation. The peak is 17.5 cm of uplift with little horizontal motion.
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Bakersfield

Space Geodesy and Sequestration: The Movie

placement for deforming area (k
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In Salah, Algeria test site: verify U of M INSAR
. processing

published work at In Salah

showed that time-dependent
uplift related to CO, injection
can be monitored with INSAR
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* In Salah: 44 Envisat images 2003-2010

* 98 interferograms

* Ingestion of processed data into U of M-developed interferogram
viewer
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In Salah, Algeria results stop of\injection?
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Typical GPS
Station Installation
by Unavco:

GPS + seismic
Network in Costa
Rica for UM
Earthquake
Experiment
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Seismology

Principle: Emplacement of CO, both can cause seismic
activity and can be imaged using seismic waves

- Seismic tomography (Vp, Vs)
* In-situ high-resolution Vp/Vs ratio (~ Poisson’s ratio)

*We will use natural seismic waves as well as detect
seismic event induced by the injection
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Example: Long Valley Caldera
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Geochemical Aspects .

* Monitoring of CO, escaping from reservoir

— Concentration measurements- (Riemer, Swart &
student)

— Isotopic composition (33C/12C) of CO, (Swart, Riemer
& student)

* Reactions in Reservoirs
— Direct Observations (Swart and students)
— Modeling (Swart, Dixon & students)
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ldentification of CO, Source

» Step 1: Recognition of concentrations of CO,
above baseline ambient concentrations

— High speed, high precision, infrared gas analyzer
deployed at several sites around the target area.

— Measurement of soil gas fluxes and subsurface
gases

| Fupmmen
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« Step 2: Deployment of a cavity ring
spectrometer allowing for rapid and
continuous Isotopic characterization of
emissions

— After identification of potential sites a cavity
ring spectrometer will be deployed.
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Cavity Ring Spectrometers

Portable

— Operated using an inverter in a car and
therefore can obtain spatial data

— Postioned in the field

Rapid

Fairly sensitive (5 mins for 0.1 per mille)
Few moving parts

30



Range of Carbon Isotope Values
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Look at the Rocks and Fluids

 Direct Observation

« Stable Isotopes
« X-ray Diffraction
- SEM

« Other?

Fi. 6.—A) Pore-lining dolomite cement typical of the upper parts of the Rotliegend section. B) Thin-section view of the pore-ining cement. FOV 5 2.5 mm. C)
Dolomite mini-concretion from the lower part of the Rotliegend section.F OV 5 2.5 mm. D) SEM-CL image of dolomite from the Orwell Field, which is very similar to
that in the Fizy accumulation. FOV 5 190 microns.
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Modeling

Modeling

— Reactive Chemical Simulator (Finite Element
Modeling)

— Equilibrium and Kinetic Modeling (Geochemist
Workbench)
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Fig. 15. Change in dawsonite density 950 years after the beginning 33
of CO; injection {units are mol drii’).



Questions?
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