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Clean Coal Utilization

<

 The Energy Department's Office of Fossil Energy is working on
coal gasifier advances that enhance efficiency, environmental
performance, and reliability as well as expand the gasifier's
flexibility to process a variety of coals and other feedstocks
(including biomass and municipal/industrial wastes).

 Coal gasification is one of the most promising technologies

GasiRCANON-BAsED System CoONCERTS

for energy plants of the future.
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* Need materials for high
temperature applications.

— Oxidation, corrosion, creep
and fracture resistance.

* SiC-Si;N, composites.
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Computer-aided design to investigate materials for use in future high
temperature power plant applications

Fracture and

ngrs'gtg creep resistance Variable Fidelity
J at about 1200 K Optimization
SIC-Si,N ‘ Optimal
374 Morphologies
Design | | PEase S|z|e Multiscale Material
Variables | i ase ECUE Simulation SiC-SizN,
Fraction nanocomposite with

desired properties

Want: Accuracy of quantum mechanics (QM) in 102 atom systems...

This is impossible (today and in the foreseeable future)

Possible solution: ~1 023 atoms
Multi-scale modeling techniques MACROSCALE

based on hierarchies of overlapping Bridge
n SN
scales AN O
MESOSCALE \
[())
g MEMS
-+
Concept:
“finer scales train coarser
Electronics scales by overlap”
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Outline
O

» Experiments and modeling of nanothermal behavior of SiC-
Si,N, nanocomposites with an account of hierarchy

/

** The cohesive finite element method with focus on room temperature
strength

% Analyses of the effect of second phase particles and grain boundaries

> Analyzing superlattice interfaces for optimal thermal
conduction problem in thermoelectricity

/

‘¢ Molecular dynamic simulations to compute thermal diffusivity

/

*¢ Analyses of the effects of heat flow direction and grain size

» Achieving time-scaling by combining molecular dynamics and Monte
Carlo in hybrid Monte Carlo method

»> Designing materials in an optimization framework

/7

*¢ A variable fidelity model management framework
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Outline

»> Experiments and modeling of nanothermal behavior of SiC-
Si,N, nanocomposites with an account of hierarchy

\/
0’0

The cohesive finite element method with focus on room temperature
strength

NS

» Analyses of the effect of second phase particles and grain boundaries
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Material System

Grain boundary thickness of the order of
50 nm

SiC particle size of the order of 200-300
nm

Si,N, grain size of the order of 0.8 to 1.5
nm

Spherical SiC particles distributed in
Si;N, matrix in the form of intergranular
as well as intra-granular dispersions

SiC volume fraction varies between 10%
and 50%

Initial analyses reported here separate
intra-granular, inter-granular, and
mixed-granular (A combination of inter-
and intra-granular) configurations with
SiC volume fraction 20%
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Problem Setup

Total number of elements~540,000
Grain Boundary SiC

PreCrac 45 pum
y
28] Its an image-analyses based procedure and can be
T easily extended to include real experimental
— microstructures
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Microstructures of Focus-I
O

SiC in Si,N, matrix (InterST) Grain Boundary
é_‘ &8 REIR : _ os petos . SiC
Class-1 f.; BT 8 ' .
e~
Y _ o 2 . “
= 30 #m " SN,
()
SlC along GBs (IntraST) Grain,Boundary
A L T L T Tt et ; _
g.) = __ ”"N '
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~ | (Sl
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) 30 um i SN,
(b)
SiC along GBs and in Si;N, matrix (MixST)  Grain Boundary
A SiC
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Microstructures of Focus-II
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Bilinear Mixed-Mode Cohesive Law (Tomar and Zhou, 2004)

B”
Fy ':? \\ (DO = lT:laxAnc = l(I’TZWCAIC A= A”C /Atc
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Framework of Analyses
T

>
>

Bilinear Mixed-mode Cohesive law
Cohesive surfaces are dispersed throughout the microstructure

Bulk elemental properties are chosen to be hyperelastic considering that both SiC
and Si;N, are ceramics

Fracture is dynamic with timestep of the velocity progression chosen based on
CourantFL criterion. An additional constraint on the timestep is that the cohesive
surface separation closely follows the triangular path ABC in the cohesive law

Uniaxial straining NoT algorithm of Melchionna (1993 and 1995), Martyna et al.
(1994) used for molecular interfacial separation analyses

Minimum element size criterion and choice of meshes, (Tomar and Zhou, 2004).
All cohesive properties and bulk properties chosen based on atomistic simulations
satisfy the following cohesive mesh convergence criterion

InED, << N4, E’(\/E_l_l).
32(1—v2)T2 T (1-v)

max max

0.1x

UNIVERSITY OF ospace . o
@ NOTRE DAME &echanical DE-FG26-07NT43072: Program Manager Dr. Patricia Rawls

agineering



Algorithm for Uniaxial Strain Deformation in MD
N

d’;z(t) =v()+n(r(1)=R,),
t » Melchionna (1993 and 1995), Martyna et al.
dv(t) _ f(1) [x(e)+n(0)]w (o), (1994) NoT algorithm (recently used with HMC in
di n Tomar, 2007, JAP and Physica Status Solidi-a)

dy(1) _ 2E,, (t)-20-3k,T,,

» Of all the quantities n,; determines the stretch of

d
t s cell along x-axis
qmass :202-;
> At each time-step o, _ adjusted such that n,, value
dn(1) _(o(t)-o ’)V(t)—z ()n(0) results in stretching of cell at the specified strain
dt Prass rate for example at an instantaneous cell length,
— : 8 -1
b, (f +3)k - N,,=0.0001 corresponds to a strain rate of 10° s
" 30 » Three combinations of 7, and 7, are tried
dH (1 (0.15:1.25, 0.25:1.5, and 1.5:2.0) and 0.25:1.5
Doy (e
dt chosen for least fluctuations in pressure and
() conserved quantity (Gibbs Energy)
t
dt =0r[n(0)]7 () » Stress calculated correspond to true stress and

strain correspondingly to true strain
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Atomistic Deformation

SiC-SiC (Tersoff Potential, 1988))
Si;N,-Si;N, (Gale Potential, 2001)

For SiC-Si;N, A combination of Tersoff,
Garofelini potentials with first principle
calculation derived C-N bond energies

2.0

—
o

4"‘-;' %,
AT AR e h

Stress, [GPa]
o

=
U

SIC-Sic

The cohesive traction value motivated

l]_l]n 5 3 5 3 70 from peak separation strength in the
Time, [ps] atomistic simulations
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Framework of Analyses: Material Properties with GBs
<

Component |  (Nm) T (GPa) A am) | E (GPa) v p (kg/m?3)
S1C (sc) 19.53 1.02 38.3 449 0.16 3215
S1;N, (sn) 191.5 2.3 166.5 210 0.22 2770
GBs (g) 238.7 2.38 200.6 200 0.16 4000
(sc-g) 1953  [1.02 38.3 - - -
(sc-sn) 19.53 1.02 38.3 -- -- --
(sn-g) 1915 |23 166.5 - - -
Homogenized (H) | 127 .8 2.03 125.9 256.8 0.202 2982
H-sc 19.53 1.02 38.3 -- -- --
H-sn 127.8 2.03 125.9 -- -- --
H-gb 127.8 2.03 125.9 -- -- --
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Damaging Effect of Second Phase Particles
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Damaging Effect of GBs
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Second Phase Particles Effect on Crack Density

. 1.5 25
5 - 0.5 m/
© © .5 m/sec
o 2.0 m/sec 14
ST 1.0F _/ §§2.0— \
E A o™
N O
o — o
T = o0.5) T T = 1.5) 2.0 m/sec
% 0.5 m/sec % - [ - -
: : = - ~ - -
m 0 0 1 1 1 m 1 0 | hlf |
. Class-1  Class-11  Class-III ] Class-1  Class-I Class-III

»> Higher second phase particle numbers in the matrix directly relate to
higher crack density

> In some cases second phase particles in matrix act to bridge the cracks
leading to lowering of crack density
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GB Effect on Crack Density

3.0 1
- ’ g |
& I 0.5 m/sec E ol
$E 2.0 — ae | 0.5 m/sec
E = [ 2 m/sec 3 = 2L
o | O |
:,‘E:a 1.0 :,,::l g

B 5 L

g s T~ 2misec
c i LICJ i
L 0.0 1 1 1 1 3

I ] ] ] ]
Si3N4 No-GB 3% 10% 13% No-GB 5% 10% 15%
» GBs tend to limit the damage

» Least damaged microstructure is the one with second phase particles
lying along-side GBs in the matrix acting as crack bridging elements
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SiC-Si;N, Nanocomposites: High Temperature Constitutive Model
N

n m

E E o Rouxel and Besson, 1997
— | || =-exp
&, &, RT Lei, Shin, Incropera, 2000

1500 K

Stress (MPa)

SiC

Strain
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Cohesive Model of Intergranular Glass Phase

S 2 S 2 11/2
AN=|{——| + f
5.’? max 5f max

forO0ss\ <1

27 ,
F(N) = Ifn(l(T)(l —N)*

2
F(}\ max)

n max

l,=
t max

KH(1-v)
" E
D=

ot
e

t,olT) = fg[ % — In(k, - r‘ﬂ}

F:fNT-tclA

K:J (NT.D - N)dA

5"]{1}( é‘l'ﬂil)( 27 5 5 2
G,.= tdd= —tp—|1-—| ds=
0 0 4 Onax Smax 4

at,

a5,
o,

dé

n

27

for tensile loading (5, = 0) ;
0

)
f= a——F(\pa)

8

an,
a6,
o,
a6,

[ 0 fsmax

In ABAQUS, the
cohesive element is

1A
defined through a
_____________ user defined
subroutine.
t
di O max O

Sketch of an irreversible cohesive model.
G = fracture energy, J
A

= cohesive damage parameter

0, = normal opening displacement of a cohesive
pair, m
o, = tangential opening displacement of a cohesive
pair, m
t = cohesive stress, MPa
t,o = normal strength of a cohesive pair, N
t,o = tangential strength of a cohesive pair, T
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Experimental Investigations

3 TGRSl : S Ennig R e Ceramic . x8.0k 10 um
Ceramic D19 x20k  30um Hitachi TM-1000 SEM
Hitachi TM-1000 SEM
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Conclusions and Summary
T

> A method for analyzing dynamic fracture in SiC-Si;N, nanocomposites
with molecular motivated interfacial separation laws is presented

» Preliminary interfacial laws are motivated from a single set of molecular
interfacial separation analyses and experimental observations

> Analyses are performed on a range of inter-, intra-, and mixed granular
nanocomposite configurations

> Analyses clearly establish the dominant role played by the grain
boundaries in and the second phase particles in the fracture strength of
this important class of nanocomposites

» New directions include nanomechanical testing and Abaqus
implementation of high temperature cohesive testing
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Outline

> Analyzing superlattice interfaces for
conduction pro lem in thermoelectricity

\/
0’0

optimal thermal

Molecular dynamic simulations to compute thermal diffusivity

\/
0.0

Analyses of the effects of heat flow direction and grain size
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Macroscale = Nanoscale
O

Nanoscale thermal transport is important when either the individual energy
carriers must be considered and/or when continuum models break down.

0 ( EﬁTj o, or) o ( 8T] . oT
k. + k + k., +qg=pc, —
ox ox) oy\ Yoy oz 0z P ot

Nanostructure
N N\ e
L |
NN /
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Si/Ge Superlattice
N

» Drastic drop in thermal conductivity for
L>130A was explained with the concept of
critical thickness( hc ) for the formation of
dislocations. For Si/Ge, L>130A, the Si
layers have greatly exceeded /1 . and
introduces a large density of dislocations
and stacking faults.

> Else, the general trend to be found was
increase in k with increase in period
thickness of the superlattice.

> Diffuse Mismatch Model (DMM) failed to
explain the behavior and under-predicted
the k values by factor of 3-8.

=
X ; .
B
= 10}
o " AlAs—-(raAs
2 F (Ref. 7) 0
E 5k
-5 i 0 s » hd
~ 4
,g & \s:-ce
o rd
o /ﬁﬂ - — »
'3 e
g8
g i 1 gl } 1 |
8 10 50 100 500

Superlattice period (X)

Fig: Thermal conductivity of Si-Ge superlattices at
200K plotted as a function of Superlattice period L
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NEMD: Methodology

Si Ge ]
Fixed Atoms _ , QGGG RRS A/leed Atoms

N

Hot Reservoir Cold Reservoir

> Two layers of 10A0% thickness which is around 4 atomic layer are placed
at the two ends and are kept at zero velocity throughout the simulation
to simulate the Thin Film Superlattice structure.

» The layers marked ‘Hot Reservoir and ‘Cold Reservoir, adjacent to
Fixed atomic layers are kept at Constant temperature throughout the
simulation by rescaling the velocities at every time step using the
“Constant temperature gradient and momentum conserved method
(CTGMC)” proposed by Mountain et al.

Ref: R.D. Mountain, R.A. MacDonald , Phys. Rev. B 28 (1983) 3022.

UNIVERSITY DF Aerospace
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Terminology

L
(54%35¢e);: One Period of S nm Si & S nm Ge

Fixed Atoms s 14 Fixed Atoms
“ 0 ;:u ‘i;t‘b:b"b‘b &
b f m‘ t .
W .5.«'\ i [ i' ‘e'r'u'e'rit;r;t;oii 0‘0:““‘ ‘* ‘0-
LR R R ‘0‘& é“o‘ A
irabhiiithitititeltitit el ¢ e‘ *t“m “6:0§..6‘._.
Hot Junction 5 nm 5 nm Cold Junction

1 Period
(a)
(55,%5¢.)5: Three Periods of S nm Si & S nm Ge

Fixed Atoms Fixed Atoms

Hot Junction 5 Cold Junction

| 3 Periods
(b)
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Temperature Profile along Length of Superlattice
<
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» The drop in the temperature at the interface is attributed to thermal
boundary resistance

»As the number of Layers increase, the individual resistance of a solid-solid
interface to thermal transport seems to vary along the length of the system.

»Temperature Drop, AT = f(T, L, pef’iOd , POS itiOI”l)

Samvedi & Tomar, Submitted
PRB and JAP
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Thermal Boundary Resistance
T

1.50 1.50
L. (2.5,%2.5¢,), 125 (2.55,%2.56.);
2 1.00 = 1.0
S 1 £ 1 (3s%360)2
mg 075' (SSiXSGe)Z c»; 075'
— —
% 0.50 x 0.504
x 1(7.5,%7.5¢,), x 1
M 0.25- X M 0.251 (7.55%7.5¢,),
(IOSiXIOGe)z 1 (IOSiXIOGe)Z
OOO T v 7 v v 000 T v ) M !
Hot Middle Cold Hot Middle Cold
Interface Position Interface Position

» TBR at a particular solid-solid interface not only depends on the Acoustic
Mismatch across the interface, but also on the location of the interface in a
superlattice system.

» Trend in the variation of TBR depends both on Temperature as well as Period
thickness.
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Thermal Boundary Resistance Expression
<

< 4 <z 4 < 4
= . g ] g ]
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Heat Flow Direction : Si/Ge vs. Ge/Si
O

15

2.5

2.0+
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» Thermal Conductivity difference between

two systems, with heat flow in opposite

» directions depends both on the period and

number of interfaces.

» Difference depends strongly on the
number of layers, i.e. number of interfaces
encountered and not very significantly on

Temperature (K)

the period of the superlattice.
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SiC-Si;N,; Nanocomposites
N
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SiC-Si;N, Nanocomposites: Thermal Conductivity Comparisons
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Conclusion
O

» Thermal conductivity of Si-Ge super-lattice and SiC-Si;N, nanocomposite
interfaces analyzed

»> Applied strain can significantly reverse the usual thermal conductivity
picture

> Superlattice period is an important parameter to control thermal
conductivity

» Thermal boundary resistance can be tailored better by doping in the
middle layers

» Thermal conductivity is also dependent upon the direction of
measurement

» Non-traditional interfaces can significantly increase the thermal
conductivity
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Outline
G

» Achieving time-scaling by combining Molecular Dynamics and Monte
Carlo in Hybrid Monte Carlo Method
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Hybrid Monte Carlo Method for Timescaling

Generate A set of random

1
| velocities using Monte Carlo sweep
I at a time 7,
1
|
I\ Calculate system Hamiltonian H(z))

N at time ¢, (Eq. 3)

N\
\ l
- —T -~ N Perform N, steps of integration
MD
|, One Monte- with  time-step  A#y, using
N \Carlo Step _ - / Martyna’s algorithm

— o -—

Calculate system Hamiltonian
H(t,+N,, Atyp) at time ¢+, Aty

Calculate g= exp(- (H(t,+N,;p Atyp)-
H)/kzT) and generate a random
number p

Keep trajectory for time
period ¢, to ¢ +N,, Atyp
and advance simulations
to new t,=t,+N,,;, Aty

L Tomar, 2007, JAP and PSSA

Go back to the
coordinates at time ¢,
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HMC Nanowire: Ar=8 s Ny,p,=2, 8, 32

9 -1
StrainRate :10% s™ 1 0 S
At =8 fs

(4]
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HMC A=8 s Ny;p=8 MD Ar=2 fs

w
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N
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StrainRate :10° s
At =8 fs
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HMC Nanocrystalline Ni: Ar=8 fs N,,p,=2, 8, 32

O
MD Ar=2 fs
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Time of Simulations for 9% Strain: Nanocrystalline Ni
N

CPU Time: Nanowire 15% Strain CPU Time: Nanocrystal 9% Strain
—16 2

-
N
T

StrainRate :10° s™

Simulation Time, [Hours]

Simulation Time, [Hours
o0

4|
StrainRate :10° s
0 |___ . _— 0 1 I ]
HMC HMC MD with HMC HMC
MD with At = 4fs At = 8fs At = 2fs At = 4fs At = 8fs
At =2fs Nup =8 Nyp =8

Nyp=32 N,,=32
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Summary
N

» Velocity profile different and therefore exact reproduction of defects as
in MD impossible. However mechanistically the deformation maps agree
with each other between MD and HMC

» Yield strain differ by about 0.1 fraction between MD and the most
successful HMC case. This difference can be attributed to differences in
the transition state events that trigger the propagation of defects in MD
as well as in HMC. HMC events however have more statistical bias.

» Young’s moduli, defect formation mechanisms, and yield strength always
agree with each other very closely which are usually the main criterion
for successful MD simulations

» Time gain is almost 4-32 times!

» Considering that MD nanostructural deformation have been used for
deformation mechanism maps and mechanistic understanding, a huge
and significant savings in times can be achieved by using HMC..
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Outline
G

» Designing materials in an optimization framework

*¢ A variable fidelity model management framework
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Computer-aided design to investigate materials for use in future high
temperature power plant applications

Fracture and

ngrs'gtg creep resistance Variable Fidelity
J at about 1200 K Optimization
SIC-Si,N ‘ Optimal
374 Morphologies
Design | | PEase S|z|e Multiscale Material
Variables | i ase ECUE Simulation SiC-SizN,
Fraction nanocomposite with

desired properties

Want: Accuracy of quantum mechanics (QM) in 102 atom systems...

This is impossible (today and in the foreseeable future)

Possible solution: ~1 023 atoms
Multi-scale modeling techniques MACROSCALE

based on hierarchies of overlapping Bridge
n SN
scales AN O
MESOSCALE \
[())
g MEMS
-+
Concept:
“finer scales train coarser
Electronics scales by overlap”

13072: Program Ma
‘I OO--2 atoms lenath @ 2005 Markus .1 Buehler CEEMIT 8



Methodology for Materials Design

* In systems design environments, various levels of
model fidelity are developed

— Low fidelity models.

 Drive the preliminary design process as surrogates of expensive
high fidelity models.

» Cheaper to evaluate.
— High fidelity models
» Used 1n the final design stages to refine the design.
At this stage may still require enormous computational resources.
* Variable fidelity schemes incorporate both models
into one optimization framework.
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Methodology for Materials Design

 Low fidelity models are scaled to approximate the
simulations results based on high fidelity models.

 Optimization can be performed by using mainly the low
fidelity function calls, reducing the overall computational
cost.

* Require only a few high fidelity evaluations to update a
scaling function that drives the low fidelity function calls
towards optimal design.
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Computer-aided design tool to improve SiC-Si,N, composite fracture
toughness and investigate materials performance

Design
Targets

Design
Variable
S

UNIVERSITY OF A
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p(x) = )

mOde}‘high(x) ) [ (X) ® B(X) £, (X)

Optimize scaling

Fracture
resistance

e Second
Phase
orientation

pHphat Bk, (V/49)
subjectto:  B.K, <pB, K, (Vf,e),

0< ¥V, <02,

0°< 6<90°,

-0.05< AVf < 0.05, and
4°< AL 4°
Optimal

Morphology

angle o

e Second
Phase Volume
Fraction

Ve High fidelity

model

e
" CFCC setup

modeled using

COMSOL (FEM)
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Trust Region Variable Fidelity 20
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Find optimal CFCC configuration for improving K,

High fidelity
model

CFCC setup
modeled using
COMSOL (FEM)

H,A(V,)A(O)

AK,. = VK, AV,)+ VK, A@)+

%(HHA(Vf)Z + H,,A(0)")+

Low fidelity
model

Response
surface
approximation

maximize Mode-I fracture toughness K, (Vf ,6?)
subject to: K, <K, (Vf,e),
0< V, <0.2,and

0° < 6<90°.

The investigation was divided in the following three

components:

Stress intensity factor calculation in the CFCC using
the analytical fracture mechanics procedures (low
fidelity) as well as by using finite element method
(FEM) based analyses (high fidelity), to be used to
satisfy the constraint in the optimization problem; and

Fracture toughness calculation of the CFCC using
finite element method (FEM) based analyses (high
fidelity), as well as by using surrogate models (low
fidelity) created from the high fidelity model; and

Integration of the stress intensity factor and fracture
toughness calculations at low and high fidelities into

the trust region variable fidelity model management

optimization framework.
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Optimization Low Fidelity | High Fidelity Lterati 0% (rad v | & fomp 1/2
Method Simulations Simulations eration (rad.) S ic ( am )

0.08528 | 0.2 7239246.361

Variable Fidelity 187 24 4 0.08531 0.2 7239245.175
Von Mises Stress, N'm”2
0.6 2 : = ; < Min: 1372 T ; Z : | Max: 7.8¢8
/ ® Initial Desigll 1 2 3 4 3 I3 7
i ¥ Second Design ;

et
# Third Design :
2 Fourth Design L
- Constraints ;
== Function value contours

X}!H’

0.4

- v 7
"~ Expansion of

0.2

-0.1 0 0.1 0.2 0.3 0.4
Volume Fraction

Initial design V2 = 0.05 and 6°= 0.3 rad., and initial function value K,.° = 7013519.592 MPa-m??2,

I Trust Region | Trust Region Size Convergence Design Varibles and Obj. Function
teration
Adjustments AG A Vf A, Af 6 (rad.) Vf Ko (1\/11321‘11’11 /2)

1 1 0.07 0.05 0.2828 | 0.0111 0.23 0.1 7091470.873

2 1 0.14 0.10 0.6859 | 0.0208 0.09 0.2 7239211.263

3 1 0.28 0.20 0.0214 | 4E-06 | 0.08530 | 0.2 7239241.029

4 10 2.1E-10 | 0.0000012 | 0.00002| 6E-07 | 0.08531 | 0.2 7239245.175
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Analysis of the effects of reinforcement size and volume fraction on the
properties of these composites microstructure using CFEM (ABAQUN).

Cohesive  Continuum Crack Surface
element  element opening  contact

Hexagonal cell

of silicon nitride ) _>
_‘_ﬂﬁ%//f;._.ﬂ : Loading
i A m
(\‘\J A, o

/ o
'._! ! o

; . _ . m lllustration of the multiscale finite element
£ £ Q modeling of silicon nitride. [Yinggang and Yung, 07]
o=0gy| 1 +| — — - exp| —

oy = reference flow stress, MPa () = activation energy, kJ
. — ofrain 1 )
€ = strain rate, s R = universal gas constant, J/(mol K)
g, = reference strain rate, s~ T = temperature, K
gg = reference strain m = exponential coefficient of strain rate
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Connect multiphysics models with variable input variables and
Cohesive Model for Intergranular

Glass Phase
Temperature Dependant

27 )
F(N) = —1,0(T)(1 = \)~
2D Low fidelity model 4

Design Variables

. . ’ 5 \2 5 \2]w2
d- average grain size \ = (_ﬁ) +( ! )
T- temperature 2 2

1 max I max

t,olT) = fg[ % —In(k, - r‘ﬂ}

1A
Irreversible

fop=e cohesive
3D High fidelity model model.
Design Variables g
d- average grain size
T- temperature
2c- thickness

di Omax ‘;8
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Summary
<

* Coal will become the energy and raw material resource of choice in the
coming decades. The key is developing technologies for clean coal
utilization.

* Itis estimated that the use of bulk materials (SiC-Si;N,) with high
temperature properties to operate at temperatures in excess of 1500 °C in
power plants can result in enhancements in the power generation

efficiency by 10% to 15%.

 The Computer Aided Multiscale Design tool is expected to work
efficiently on obtaining the most suitable sets of morphologies (design
variables) to obtain a designated target set of properties by integrating
multiscale simulations of the SiC-Si;N, nanocomposite in a trust region
variable fidelity framework.

e Results will be useful for understanding the applicability of this
important class of materials to future fossil energy conversion systems.
The demand for higher efficiency and reduced emissions in advanced fossil-
fuel conversion systems will require materials with higher oxidation,
corrosion, creep, and fracture resistance at high temperatures.
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