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Motivation

• Need: Gas turbines with sufficient flexibility 
to cleanly and efficiently combust high H2
fuels

• Need: Combustion systems that can stably 
operate over a wide turndown range

• Problem: Combustion instabilities have posed one of 
most significant issues encountered in low NOx gas 
turbines
– Fuel variability poses significant challenges in developing 

stable combustors
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Objectives and Approach

• Objective: Improve understanding of combustion 
dynamics in high H2 fueled turbines

• Approach: Parallel theoretical, experimental and 
computational investigations of 
– Flame response to fuel/air ratio and velocity 

oscillations
– Understand phenomenology and how it is influenced by fuel 

composition
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Key unsolved problem;
Very nonlinear relationship

• Slope in linear regime needed to predict conditions under which instabilities occur
• Nonlinear characteristics needed to predict instability amplitude
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Analysis of Flame Response to 
Fuel/Air Ratio Oscillations
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Equivalence Ratio Perturbation 
Mechanism:  Fundamental Processes
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Equivalence Ratio Perturbation 
Mechanism: Fundamental Processes

• Objectives
– Identify mechanisms leading to nonlinear heat 

release response to equivalence ratio 
perturbations

– Generalize prior analysis to include non 
quasi-steady effects
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Linear Flame Response

• Response determined by 
linear sensitivities
– Flame speed:

– Heat of reaction: 

• Flame speed and burning 
area contributions balance 
at low excitation 
frequency

• Vanishingly small low 
frequency response for 
rich flames Transfer Function = 



Non-Linear Response - Lean

• φo=0.85
Transfer Function

Heat release response
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Key Findings

• Two fundamental mechanisms of non-linearity
– Kinematic Non-Linearities

• Occurs at high excitation amplitudes and frequencies
– Nonlinear φ-hR-sL relationship -

• Quasi steady nonlinear relations between φ-hR and φ-sL
• “Cross-over” Occurs when equivalence ratio oscillations 

cross over from one region in stoichiometric space to 
another

• Non quasi steady effects
– Negligible at typical GT conditions
– Very important for typical conditions at ambient P 

and T
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Analysis of Flame-
Acoustic Field Coupling
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Flame-Acoustic Flow Field 
Interactions

• Harmonic excitation of flame 
results in convecting wrinkles 
propagating at speed of Uo

• Low amplitude acoustic excitation
– Waves reflect off impedance 

discontinuity, form complex, multi-
dimensional standing wave field

• High amplitude acoustic excitation
– Convecting flame wrinkles 

influence character of upstream 
disturbance field

– Gives it a local, convecting 
component
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Analogy – Acoustic “Wavy Wall”
Problem

• Consider wave moving along boundary at speed Uc
– Excites acoustic field with 

phase velocity of Uc in 
axial direction

– Flame looks like finite 
impedance “wavy wall”

• Research Questions:
– Are disturbances with phase speed Uc~Uo purely vortical or do 

they have an acoustic component?
– What are relative magnitudes?
– Problem requires computational approach, as not possible to 

eliminate vortical disturbances in experiment
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Numerical Formulation

• Flow solution
– Compressible inviscid Euler equations

• Flame front tracking
– Level set approach
– Represent the flame as  a contour 

of a 2D surface z = G(x,y)
– Evolve surface in time using P.D.E.

– Ghost Fluid Method to implicitly 
capture temperature jump at flame

– flame speed depends on local curvature
• Numerical scheme

– 5th order (WENO) in space 
– 3rd order in time (TVD-RK3)
– Implemented using the LSGEN2D  local-level set 

framework

Wall
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Phase Of Flame: Centerline 
Velocity Difference

• Result clearly demonstrates acoustic component has 
phase velocity component that propagates axially with 
velocity proportional to mean flow
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Key Findings

• Acoustic interaction with flames excites 
– Traveling wave vortical structures propagating at local 

flow velocity
– Complex standing wave composed of long 

wavelength acoustic disturbances propagating at 
sound speed

– Acoustic disturbances in flame nearfield with phase 
velocity (not group velocity) related to flow velocity

• In general, convecting phase velocity 
measurements could be indicative of vortical or 
acoustic disturbances
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3rd Order Perturbation 
Analysis of Velocity Response 

of Turbulent Flames
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Theoretical Framework
• Extensive prior work using level set based 

formulations to rigorously analyze laminar 
flame response to flow oscillations

– Current implementations assume that 
this can be generalized to turbulent 
flames by replacing SL by ST

• Study objective: Perform perturbation 
analysis of turbulent flame response to flow 
oscillations

• Approach:
– Consider flame response to 

superposition of broadband (turbulent) 
and narrowband flow oscillations

• Using asymptotic expansions to find 
solutions

– System of stochastic PDEs for the 
instantaneous flame shape
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• Asymptotic expansion

• Typical form of the system of PDEs

ζ r, t( )= ζo r( )+ εTζ1t r, t

Theoretical Framework
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Experimental Characterization 
of Acoustically Forced Swirl 

Flames



2008 UCR/HBCUMIC

• Extensive parametric 
study of:
– Flame transfer functions
– Phase-locked OH PLIF

• Enables comparison of 
global flame response 
characteristics (transfer 
function measurement) 
to details of spatio-
temporal flame evolution 
(OH PLIF)
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Inlet Section
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Typical Transfer Functions Relating 
Heat Release to Fluctuating Velocity 
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• Flow
– Outer Recirculation Zone 

(ORZ)
– Internal recirculation 

zone/vortex breakdown 
bubble (IRZ)

– Annular fluid jet

• Flame stabilization
– Leading edge of IRZ 
– Nozzle exit
– Centerbody exit
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Characterization of 
Flow/Flame Dynamics

1. Fluctuating Annular Jet Velocity

2. Oscillatory Flame Brush Development

3. Flame Stabilization

4. Fluid Mechanical Instabilities
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1. Annular Jet Fluctuations
300° 240° 180°

60°0° 120°

f=140 Hz, u’/uo = 0.17                            f=210 Hz, u’/uo = 0.25
Re = 44,000

(d)
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3. Amplitude Dependant 
Flame Stabilization

410 Hz, Re=21,000 and u’/u0 = 0.2. 410 Hz, Re=21,000 and u’/u0 = 0.6. 
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4. Fluid Mechanical Instabilities: 
Shear Layer, ORZ, and IRZ Dynamics

(a) Shear layer  
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(c) IRZ 
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Experimental Characterization of 
Acoustically Forced Turbulent 

Flame Brush Dynamics
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Acoustically Excited Turbulent 
Bunsen Flame

• Acoustically Forced Bunsen Flame
– Oscillating flame length
– Convecting ring vortices
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Flame Brush Evolution: 
Unforced vs. With Acoustics
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Flame Brush Evolution: Unforced 
vs. With Acoustics (Swirl Flame)

Re =21,000, f= 130 Hz, u’/uo = 0.6

• Modulations in flame length
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