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OUTLINE

Nexus of Water, Energy, and Climate

Higher Efficiency, Lower Temperature Cycles
Conserve Water and Energy

Steam-Ammonia Absorption Power Cycle
Demonstration Project in Kotzebue, Alaska
Water Conserving Aspects



S
The Triple Alliance é@ %@
A\

Population

Encounters

N\
The Triple Crisis 6&6‘6& %?Q/.

O
L Resource Depletion A



CONTEXT

Ultimate question - carrying capacity
Current ecological footprint - 1.5 planets

Twol/thirds of global population have
unacceptably low living standard

*Economic growth” paradigm exacerbates the
Crisis

Sustainable paradigm - economic stability plus
rapidly shrinking ecological/carbon footprint



Objectives

o Conserve Water and Energy
— Higher efficiency saves energy
— Reduced heat rejection saves water
— Higher efficiency reduces CO2
— Saved energy can be used to reclaim waste water

e Concentrate on low temperature waste heat
— Between 160°F and 300°F (>90°F above ambient)
— Exceedingly large and under-utilized resource



APPROACH
Steam Ammonia A bsorption Power Cycle

* Why the Absorption Power Cycleis Preferred

— vs Organic Rankine Cycle
 glide match for higher efficiency
o smaller, lower cost turbine
o smaller, lower cost heat exchangers

— vsthe Kalina Cycle
 avoidstotal condensation (corrosion problem)
 higher performing components
e no need for “DCSS’



Power Cycle Comparison
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APPROACH
Steam-Ammonia Absorption Power Cycle

» Why agueous ammoniais the preferred
working fluid
— superior transport properties
— optimal pressures
— non-corrosive to low cost materials
— high latent heat
— less than half the heat transfer surface



Working Fluid Properties
Condensing at 35°C (95°F)

H,O NH; Propylene R134a
Pressure [bar] 0.06 13.5 14.7 8.9
[psia] 0.82 196 214 129
Latent Heat [J/d] 2418 1122 314 168
[Btu/lb] 1039 483 135 72
Density [kg/m”] Liquid 994 588 486 1168
Vapor 0.04 10.5 315 43.4
Liquid Thermal Conductivity [W/m-K] 0.611 0.457 0.107 0.078
Liquid Heat Capacity [J/g-K] 4.183 4.873 2.775 1.466
Liquid Viscosity [10°®, kg/m-s] 720 120 83 172
Condensation-side Coefficient [W/mz—K] 3021 2417 587 517
Water-side Coefficient [W/m?-K] 5000 5000 5000 5000
Overall Coefficient [W/m?-K] 1883 1629 526 468
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Absorption Power Cycle

Optimal pressures - compact, economical
equipment
Glide-matching heat input

Glide-matching heat rgjection - more
efficient, and conserves water

Uses more of the glide heat (system
efficiency vs cycle efficiency)



Qualitative Power Cycle
Comparison
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(WASTE) HEAT SOURCESFOR
ABSORPTION POWER CYCLES

e Prime mover exhaust

e Boiler/furnace/kiln exhaust
e Process fluids

e Geothermal heat

o Solar thermal heat



Dual Function Absorption Cycle
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Avena Power Plant: Modified System
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DEMONSTRATION PLAN

* Design, build, and test 25 kW laboratory prototype
APC

— validate performance of single rotor helical screw
expander

* Field demonstrate 150 kW APC at Kotzebue
Electric Association
— 180°F jacket water heat source
— generic application useful at many other sites
— Alaska Energy Authority interest

— KEA isan early adopter - has implemented numerous
other advanced energy efficiency and renewable energy
projects



Kotzebue-APC
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Alr Flow Required for Power
Cycle Heat Rgection -
Dry Cooling vs Wet Cooling

Six times more for same condensing pressure
Three times more for max power production
Coolant glide doubles (40 vs. 20 ?F)

~ 3% penalty on heat rate



WATER CONSERVATION ASPECTS

e Opportunity cooling
— onhethird of heat rgection to city water

— reduces energy used by city residents to make
hot water

« Damp cooling
— dry radiator cooling most of year

— wet cooling tower cooling only on hottest days
of summer



CONCLUSIONS

The century-old absorption power cycleis
being re-constituted

The APC excels at converting low
temperature waste heat to power

The planned 150 kW demonstration at
Kotzebue Electric Association will convert
180°F jacket heat to power at 9% efficiency

Water will be conserved by opportunity
cooling and by damp cooling



Effect
of
Damp
Cooling

Incremental Electricity Cost (mills/kWh)
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Steam-Ammonia Power Cycle

Two Rankine cycles with two interconnections
Adds superheater and economizer

Major system efficiency gain dueto glide
matching

Each working fluid stays within its optimum range

Patented
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L imitations of Steam Power Plants
with Low Temperature Glide Heat

e Deep vacuum - large and costly components

« Boiling temperature selection - Hobson's
choice

e Condensing temperature - similar tradeoff





