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Motivations for Detection '/'}I J

Health, Safety, and Environmental (HSE) Impact

S L @ &c,%' & o
P & N o0 & &
& @ SSUNIPR N AW
SR IR TR <
g}‘i\g J) ({Q @.Q rz,Q) 'b-(\ Qb
RO S Q& O
AS) {\rb' (Jo Q.QJ ™ &0
X SO S PG - :
) © of . Others include:

e Storage credits

¢ |ntrusion into vadose zone
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* Root zone effects | e Storage verification
|
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e Intrusion into potable aquifers :

———————————————————— \ (3
e Intrusion into hydrocarbon reservoirs \

* Displacement of brine Subject of this chapter

¢ Induced seismicity

Increasing HSE Impact ——
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The Problems cecee]

—Seepage style (diffusive, geyser, ...)
—Ildentification of the location of the seepage
—Quantification of the seepage magnitude

—Optimization of the seepage monitoring network
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Types of Measurements )\| ﬂ
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The Length Scales (i) corces))
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The Length Scales (i) corces))
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The Length Scales (ii) :\%
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The Length Scales (iii) :\%
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The Length Scales (iv) )\|
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Seepage as an Anomaly /\| b

* Importance of Baseline measurements (prior to injection!)

e Seepage: ANOMALY with respect to an expected or
measured BASELINE

 Integrated Baseline: a set of CO, measurements in a region
with no seepage as a function of parameters such as:
elevation, soil moisture, air and soil temperature, vegetation
cover, solar irradiation, etc.

e Assumptions:
(1) Stationarity in space;
(2) Stationarity in time (time-series analysis)

e Detectability
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Photosynthesis and Respiration
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NET CO, FLUX EXCHANGE
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Example Midwestern Site '/'f}I i

Aerial view Topo map from DEM
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Artificial Neural Networks /\I "

Inputs  Layer of Neurons

Py = {topography,
soil water saturation,

Where )
vegetatlon, etc.}

R = number of

elements in Yy = {concentration, flux}

input vector
S = b f —_
::ummﬁ; ?n layer y - AN N(pk)

Note that the ANN is
Measurement-based =>

a= ﬂWp + b}
Input Hidden Layer Qutput Layer no model needed
r N N A
> 1w L i w ELl 1YY
11 N1
2 — -\ nt f 421 — -\ ne 3 =1
j 4xl j[:) 3 x1| 74
19 bt 1= he
5 T 2 s : Ref: The Neural Network Toolbox
"\ _ ~/ \ : / for MATLAB.
a! = tansig (TWuipt +by) a: =purelin (LW2.1a1 +b2)
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Neural Network Regression
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Particle Swarm Optimization
(Eberhart and Kennedy, 1995)

e Optimization heuristic inspired by social behavior
of bird flocking or fish schooling with similarities
to Evolutionary Algorithms

e |s based on attraction of solutions to best-found
solutions

* Proposed by Eberhart and Kennedy in 1995
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Particle Swarm Optimization, the guts /\I .

Vi(t+1) = a-vi (1) + Blo(p; —x;) + p(g ;)
X (t+1) =X (t)+ v, (t+1)dt
X(t+1)

g(t), \ v(b)

X(t) A~ “pW)
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Example of PSO search reeceed]
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Example of PSO search reeceed]
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Conclusions /\r| o
—

1. Effective monitoring is an essential component of CCS

2. Modeling can place limits on characteristic length scales
3. Identify constraints in terms of detection limit and resources

4. The ANN approach is model independent
(i.e., based on field meas.)

5. Seepage is treated as an anomaly with respect to an
Integrated Baseline

6. Static Networks can be optimized only in aloose sense

7. Dynamic Networks can be optimized for search strategy
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