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Backg round

»Compaction is the time-dependent compression, i.e. creep (strain),
of the membrane structure that occurs under an applied trans-
membran

s N N 7 Vit S
»>Relatively few  membrane
compaction studies have been
reported in the literature; most
have utilized “off-line”
mechanical tests and inferential
evaluation to “show” that
compaction contributes to flux

decline during gas separation.
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Backg round

“Off-line” mechanical testing

» Testing conditions differ from
those encountered during gas

separation

» Compaction and permeation are
not monitored simultaneously
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Backg round

» Elevated temperature separations offer significant thermodynamic and
energetic advantages for many chemical processes; hence, a growing
number of applications would significantly benefit from membranes that
can operate at high temperatures in a chemically hostile environment.

» However, creep typically becomes more pronounced at elevated
temperatures and may therefore accelerate any long-term decline in
membrane performance.

» Elevated temperature compaction measurement provides an assessment
of membrane performance under more realistic and industrially relevant
gas separation conditions.

» Dense films studies represent a logical starting point for evaluating
compaction and its effect on long-term gas transport; this information Is
Important in our team development of polymer-metallic composite
membranes for high-temperature gas-separation applications.
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Materials and Methods

» Materials
* Polybenzimidazole (PBI): ~30-pum thick films; T, ~ 450°C
» Experimental Design
« Factorial design with replication
« Experimental variables: Temperature and gas medium
« Response variables: Compressive strain and permeability
 Control variable: Pressure (3.1 MPa)

» Measurement Methodology

 High Temperature Simultaneous Transport and Mechanical
Property (STAMP) Measurement

* Independent characterization technigues including x-ray
diffraction and thermal analysis (TGA)
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STAMP AEEaratus
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»Practical resolution: 0.2 um
»Upper temperature limit: 450°C
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Strain/PermeabiIitx fgt,Tz: N2
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Strain/Permeability f(t. 1): He
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Strain/PermeabiIitx fStITZ: CC)2
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For 7 < 200°C, swelling is
observed; for 7 > 300°C,
appreciable creep occurs

At  100°C, permeability
Increases slightly with time;
at 7 > 400°C, permeability
evidences a time-dependent
decrease.



Cvcling: Temperature & Gas
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Results: XRD and TGA

12 PBI Film
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= X-ray diffraction profiles of PBI
= Tested (440°C,N;)  reveal amorphous halos; there
= IS no evidence of strain-induced
% asreceived,  Crystallinity during testing.
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Conclusions

» Under N, and He, PBI dense films evidence relatively small
creep strains; under CO,, films showed swelling at lower
temperatures and appreciable creep strain at higher
temperatures, i.e. CO, is an effective plasticizer.

» For N,, He and CO,, PBI dense film permeability was stable
for T < ~400°C and decreased as a function of time for
T >400°C.

» The time scale for the observed changes in strain appears
different than that for the corresponding changes in
permeabillity.

» Initial changes Iin strain and permeability values at higher
temperatures may be due to solvent and/or monomer loss.

» The protocol employed utilized short-term testing; hence,
the issue of long-term permeability decline due to creep-

induced microstructural changes requires further study.
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