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Cross Well Data
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Path from geophysics to reservoir

e Geophysical estimates of Vp, V., and c

* Rock-physics model that relates geophysical
parameters to reservoir parameters

* Two approaches taken
— Rock-physics transform (V,, V, s) -> (S, 0)
— Bayesian inversion




Rock-Physics

 Velocity

— Hertz-Mindlin & Hashin-
Strikman (effective dry rock
bulk modulus)

— Dry frame K(P4)

— Gassmann (fluid
substitution)

e Density
— Mixing law

o Simplex inversion for
model parameters
— Input (¢, Sy, S, P, T,0il AP,

und surface {m)
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¢, gas density) Oil API 28.5 Grain Poisson 0.26
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Archie’s Law

| ogs determine porosity
exponent

e Novariable S, so S,
exponent is unknown

— Limited sensitivity to S,,
exponent at small AS,,

— At higher AS,, unknown
exponent -> 10% variation
In estimate

e Inversions run at S, '8
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Prediction from Rock-Physics
transform ) s —

e V,, V, p model used to
convert AV, to AS,,

e Archie’s Law used to convert
Ac to AS,,
e Seismic result
— 50% S,, at Obs. well
— Nov 2 log average S, =
83%
o EM result
— 90% S,, at Obs. Well

— Dec 2 log average S,, =
80%
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Bayesian Estimation Model

Posterior PDF Likelihood function
T (4,350 Pl Ko, K, p,0) oc T(Ky, ks, 0,0 9,5, P)
f (0,S,,,S,,P)
Likelihood can be simplified Prior PDF
f (K K 0,0 [0,S,S0,P) = T(ky [4,Sy,,Sq, P)UT (Ks [ ¢, P)
U (p|4.S4:So)If (04,5,

where K, = 9.(4,S,,,S,,P) + &, Ke = 9,(8,P) + &
,O=g3(¢,SW,SO)+8p G:g4(¢1sw)+‘90

Eor example, If we assume &_ has the Gaussian distribution;

_ 2
f(a|¢,sw)=\/2%exp{_(0 g;[(fz,sw))}

where, D' Is the standard deviation of the errors
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MCMC Sampling Method

e MCMC methods use a variety of algorithms to
update Markov chains, which are convergent to the
true distribution

— chains are irreducible and aperiodic.

e Traditional Monte Carlo (MC) methods (e.g., Bachrach
et al. [2004]) draw samples uniformly in entire feasible
space, but MCMC methods sampling density is
proportional to the true probability density function.

e For example, in Bachrach’s paper, the traditional MC
methods need to draw 100,000 or more samples, but
MCNMC methods only need to draw 2,400 samples with
the first 400 as burn-in.
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Joint Inversion

£

Estimated Vp and o at the
two times are used to
estimate Sw

Joint estimation removes
artifacts not common to both

Predicted has a time smear
of 1 month due to time lag in
surveys
C-sand S,, = 75-85%

— Log ~ 80%

Indication of CO, reaching
the B sand above

— S, =75-85%
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Discussion

* Processing is not complete
— Refinement on seismic picks and sensor rotation

e EM inversions have not been exhaustive
— Data sensitivity analysis and further editing may imporve

o Both seismic and EM inversions could benefit by
cross-iterations where models are transformed to
each other and used as starting points

* |nput from Final VSP models has not been
Incorporated
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Conclusions
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Both time-lapse EM and seismic see changes
realated to CO2 movement

— Noise levels need to be reduced

Both techniques suggest possible movement of fluids
(CO2 and/or brine) up the injection well annulas and
iInto upper formations

Transformation of seismic alone via rock-physics
model yields lower Sw estimate in November

Transformation of EM alone via rock-physics model
yeilds higher Sw estimates in December

Joint inversion estimates of Sw. in C sand are very
close to logged value

Joint inversion estimates of Sw indicate chane in B
sand

Further work will improve all estimates






