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Introduction

» Can agriculture and forestry provide a short term
bridge to a longer term reduced-emissions future?

» How significant a contribution could agriculture and
forestry make relative to non-agricultural (e.g.,
energy and industrial) mitigation possibilities?

» What analysis tools can help us address these
guestions?



Methodology

» No single model can simulate all the relevant processes
and activities

» Three models are used

e EPIC

= Crop growth simulation model

m Validated against long-term agricultural experiments
e FASOMGHG

m Economics of land use and production of agriculture and forestry
products

m Simulates terrestrial mitigation options over time as a function of carbon
price

e Second Generation Model
m Economy-wide simulation of greenhouse gas mitigation opportunities

m Comparison between types of mitigation opportunities by cost and over
time in US

» Changes in crop tillage
e Used as an example to show information flow between models



Integrating soil and biological processes at landscape
scale through simulation modeling

» EPIC is a process-based model built to

describe climate-soil-management
EPIC Model interactions at point or sma?l watershed
scales
~Solar irradiance  Precipitation e Crops, grasses, trees
Wind {:} e Upto 100 plants

e Up to 12 plant species together

» Key processes simulated
e Weather

e Plant growth
= Light use efficiency, PAR
= CO, fertilization effect
= Plant stress

Erosion by wind and water
Hydrology

Soil temperature and heat flow
Nutrient cycling

Tillage

Plant environment control: fertilizers,
irrigation, pesticides

Williams (1995) e Pesticide fate
Economics

C,N, & Pcycling  Pesticide fate

Representative EPIC modules



Long-term experiments: essential tools to
understand management effects on
soll organic C dynamics

» Forest to agriculture (~1900) Aerial view of Breton Classical Plots
» Breton Plots initiated in 1930

» Current treatments (1938)

e Two crop rotations: a) fallow-wheat, b)
five year (wheat-oats-barley- forage-
forage)

e Fertility treatments: a) control, b)
fertilizer, c) manure
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EPIC provided realistic yield simulations of cereal and
forage crops at the Breton Classical Plots
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Soilorg.C (kgCm ‘2)

Soilorg.C (kg Cm ?)

EPIC captured the soil organic C (SOC) dynamics at Breton although it

overpredicted at low SOC values and underpredicted at high ones
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National runs with EPIC

Carbon Sequestered (g/m2/yr

Notill C Benefit for Dryland Corn by Soil Cluster for Selected States
(Soils ineach state sorted in descending order of NT benefit)
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FASOMGHG Overview

Intertemporal, mathematical programming model depicting land transfers and
other resource allocations among agricultural and forestry sectors in the U.S.

10-year time steps through 2100

Endogenous variables
e Commodity and factor prices
e Production, consumption, export, and import quantities
e Management strategy
e Resource use
e Economic welfare
Greenhouse gas accounting
e Carbon dioxide emissions and absorption
e Methane emissions
e Nitrous oxide emissions
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FASOMGHG Activities

GHG affected

Mitigation strategy Strategy Nature CO, CH, N,O
Biofuel production Offset X X X
Crop mix alteration Emission, Sequestration X X
Rice acreage reduction Emission X

Crop fertilizer rate reduction Emission X X
Other crop input alteration Emission X

Crop tillage alteration Sequestration X

Grassland conversion Sequestration X

Irrigated /dry land conversion Emission X X
Livestock management Emission X
Livestock herd size alteration Emission X X
Livestock system change Emission X X
Liquid manure management Emission X X




_oncepts for Assessing Mitigation Potential

Example: U.S. ag soil potential:
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FASOMGHG Results

» Results reported as cumulative amount of CO,-eq
sequestered or emissions avoided over time

e More accurate picture of dynamics
e Soil sequestration saturates after three decades

e Quantity of sequestered carbon may decline in later
decades, especially when trees are harvested

» Charts shown for $15 and $30 per t CO,-eq for
2010 through 2100
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FASOMGHG Results ($15 per t CO,-eq)
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FASOMGHG Results ($30 per t CO,-eq)
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Greenhouse Gas Mitigation Options
(SGM with FASOMGHG)

» Terrestrial
e Soil sequestration
e Forest management
e Afforestation
e Biofuel offsets
e Crop energy management
» Non-CO, greenhouse gases
e EXogenous marginal abatement cost curves
e Developed by U.S. EPA for Energy Modeling Forum
e Covers agriculture and industry
» Energy efficiency and fuel switching

» CO, capture and storage (CCS)
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Second Generation Model

» SGM characteristics

e Computable general equilibrium model of United States and other
world regions

e Five-year time steps from 1990 through 2050

e Capital stocks are industry specific with a new vintage for each
model time step

» CO, capture and storage with electric power

e Engineering cost model for capture process from David and Herzog,
2000, “The Cost of Carbon Capture,” Proceedings of the Fifth
International Conference on Greenhouse Gas Control Technologies

e Constant cost of carbon disposal ($40 per tC)
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Combined Results ($15 per t CO,-eq)

B FASOM forest mgmt.
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Combined Results ($30 per t CO,-eq)

B FASOM forest mgmt.

O FASOM afforestation
O FASOM soil

O FASOM biofuel

B CCS

O F-gases

O nitrous oxide

O methane

O energy system CO2

4,000
Components of U.S. .
3,500 + Emissions Reductions
at $30 per t CO,eq
3,000 - . |
2,500 - [ ] H -
] ||
2 . _—
o 000 . - | —
; ] = -
I\ || — I ]
Q1,500 NS
O — J— 1 ——
= — — — [ ]
1,000 4 [ | — |
5004 | | [
O T T T —_—
2010 2020 2030 2040 205
-500 -

-1,000

19



Strategic Comparison (1)

» Total mitigation potential
across time and carbon Total Mitigation Potential
prices

» Mitigation potential
Increases with CO,, price,
as expected

» Masks underlying trends in
Individual options
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» Contribution of terrestrial
options

e Large percentage of total in
first three decades, even at
high carbon prices

e Biofuel offsets provide most
of terrestrial contribution in
later decades, but only at
higher carbon prices

Strategic Comparison (2)
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