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1. Objective

CO2 injection for EOR or saline-aquifer storage leads to
concomitant geochemical alteration and geomechanical 
deformation of the cap rock, enhancing or degrading its
seal integrity depending on the relative effectiveness of
these interdependent processes.  Injection-triggered
mineral dissolution/precipitation reactions within typical
shales continuously reduce microfracture apertures,
while pressure and dependent effective-stress evolution
first rapidly increase then slowly constrict them.  Using
our reactive transport simulator (NUFT), supporting
geochemical databases and software (GEMBOCHS, 
SUPCRT92), and distinct-element geomechanical model
(LDEC), we have evaluated the net effect of these initially
opposing contributions to long-term cap-rock integrity,
the single most important constraint on long-term
isolation performance.

1. Abstract



2. Geologic settings for CO2-flood EOR
and saline-aquifer storage

l Hydrocarbon phase present
l Compartmentalized systems�
l Rel. low perm  (10s-100s md)

l Hydrocarbon phase absent
l Laterally extensive systems
l Rel. high perm  (100s-1000s md)

l Fluid-mineral reactions are similar for
         water-wet oil reservoirs & saline aquifers



3. Long-term cap rock integrity hinges
on the relative effectiveness of
concomitant geochemical and�

geomechanical processes

immiscible CO2 phase
aqueous wetting phase

microfracture wall
matrix diffusion zone
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4. Reactive transport modeling: an advanced�
simulation capability for geologic systems

Schematic depiction of�
coupled processes

Time-integrated effects:
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5. NUFT simulation of saline-aquifer storage at Sleipner:
immiscible CO2 migration, solubility trapping, and pH evolution
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In the near-field environment at
Sleipner, roughly 85% by mass of�

injected CO2 remains as a
migrating immiscible fluid phase�

during the prograde regime

Roughly 15% of injected CO2�
dissloves into formation waters;
this prograde extent of solubility
trapping is maintained during the

retrograde phase by residual sat'n 

Acidic conditions imposed by�
CO2 injection and maintained by

residual saturation are slowly
moderated by

silicate dissolution  



      K-feldspar                  Mg-chlorite                                  DVr = +19%    muscovite                     kaolinite                 magnesite        qtz/ch

(7)  KAlSi3O8  +  2.5 Mg5Al2Si3O10(OH)8  +  12.5 CO2(aq)   <=>   KAl3Si3O10(OH)2  +  1.5 Al2Si2O5(OH)4  +  12.5 MgCO3  +  4.5 SiO2  +  6H2O  

(7)  Mg+2  +  CO2(aq)   +  H2O   <=>   MgCO3  +  2 H+   (distinct precipitation mechanisms      �
                                                                                             along upper and lateral plume boundaries)                                                              magnesite

(7)  KAlSi3O8  +  Na+  +  CO2(aq)  +  H2O   <=>   NaAlCO3(OH)2  +  3 SiO2  +  K+

      K-feldspar                                           DVr = +17%   dawsonite     qtz/ch/cr

6b. Mineral trapping: four mechanisms

6a. Solubility trapping and pH evolution
(5)  CO2(f)  +  H2O  <=>  CO2(aq)  +  H2O   <=>  HCO3

-  +  H+
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7. NUFT simulation of saline-aquifer storage at Sleipner: mineral trapping�
maintains CO2 injectivity and significantly enhances cap rock integrity
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Intra-plume dawsonite cementation�
will be characteristic of saline-aquifer
disposal; a continental-scale natural

analog of this process has been
documented in Australia (Baker, 1995)

Calcite-group carbonate rind
forms along upper and lateral

plume boundaries, volumetrically
limited by Ca-Fe-Mg concs

within the aquifer source region

For Utsira-like compositions,
coupled mineral diss/pptn does not
appreciably affect aquifer porosity;
thus, CO2 injectivity is maintained

and collapse structures do not form

Mineral trapping is most extensive�
in shales (high conc Fe-Mg-rich�
clays); although <1% of injected�
CO2 is mineral trapped, cap rock�
integrity is significantly enhanced
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8. Simulation domains for
comparing CO2-flood EOR
and saline aquifer settings
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	 	 4 Saline aquifer storage
	 	 4 Sleipner-like setting
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	 	 4 CO2-flood EOR/seq'n setting
l System commonalities
	 	 4 Shale perm: 3 md
	 	 4 Reservoir perm: 300 and 3000 md
	 	 4 CO2 injection rate: 5000 ton/yr
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9. NUFT simulation of immiscible CO2 migration and the associated pressure perturbation�
as a function of reservoir permeability and lateral confinement
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10. NUFT simulation of P evolution
at the reservoir/cap rock interface
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l P spike as plume ascends to cap rock
l Asymptotic decay toward steady-state�
    prograde and retrograde values
l Retrograde steady-state P exceeds
    ambient Ph for confined systems 
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11.  NUFT simulation of CO2 migration into
geomechanically undeformed cap rock
through increased capillary pressure
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12. LDEC simulation of aperture evolution
at the reservoir/cap rock interface:
laterally confined 300 md reservoir
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13. LDEC simulation of aperture evolution within
and immediately surrounding the cap rock:
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14. Conceptual framework for
geochemical counterbalancing of geomechanical effects
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1. Objecive

Long-term cap rock integrity represents the single most important constraint on
the long-term isolation performance of subsurface CO2 storage sites.  Ultimate
enhancement or degradation of seal integrity hinges on the relative effectiveness
of concomitant geochemical alteration and geomechanical deformation.  Reactive
transport modeling has shown that for typical shale cap rocks, geochemical
processes slowly but continuously enhance isolation performance, while
geomechanical processes at first rapidly degrade and then slowly improve it.
The extent to which initial geomechanical degradation may occur (and overwhelm
early geochemical enhancement) has been shown inversely proportional to
reservoir permeability and lateral continuity.  Hence, such degradation is expected
to be most severe in tight compartmentalized CO2-flood EOR settings, and of least 
consequence in Sleipner-like saline aquifer disposal sites. 

A conceptual framework that permits comparison of initially opposing geochemical
and geomechanical contributions to long-term cap rock integrity has been introduced.
Diffusion length and reaction progress constraints derived from this framework
suggest that ultimate geochemical counterbalancing of geomechanical effects is
feasible.  As a result, this counterbalance process represents a potentially important
mechanism for re-establishing seal integrity in certain engineered storage settings
and for initially establishing such integrity in specific natural CO2 reservoirs.

15. Summary
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