


# QUALITY GUIDELINES FOR ENERGY SYSTEM STUDIES

# Capital Cost Scaling Methodology: Revision 4 Report





# Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

All images in this report were created by NETL, unless otherwise noted.

# Quality Guidelines for Energy System Studies Capital Cost Scaling Methodology: Revision 4 Report

### **Final Report**

### October 3, 2019

### **NETL Contact:**

**Robert James** General Engineer Systems Engineering & Analysis (SEA) Directorate, Energy Process Analysis Team

> Prepared by: Mission Execution and Strategic Analysis (MESA) Alexander Zoelle and Norma Kuehn Leidos, Inc.

### **DOE Contract Number DE-FE0025912**

National Energy Technology Laboratory

Systems Engineering & Analysis Directorate

## Acknowledgments

The authors wish to acknowledge the excellent guidance, contributions, and cooperation of the NETL staff, particularly:

Robert James, General Engineer, Energy Process Analysis Team (EPAT) Travis Shultz, Supervisor, EPAT

Kristin Gerdes, Acting Deputy Director, Research & Innovation Center

# **Table of Contents**

| 1 | Foreword                                      | 9  |
|---|-----------------------------------------------|----|
| 2 | Introduction                                  | 9  |
|   | 2.1 Limitations of Scaling Approach           | 11 |
|   | 2.2 Methodology                               | 12 |
|   | 2.3 Scaled Cost Estimate Development Examples | 13 |
| 3 | Scaling Exponents and Equations               | 19 |
|   | 3.1 PC                                        | 19 |
|   | 3.2 IGCC                                      | 27 |
|   | 3.3 NGCC                                      |    |
| 4 | Revision Control                              | 42 |
| 5 | References                                    | 43 |

# List of Exhibits

| Exhibit 2-1. Category matrix                                                                                |
|-------------------------------------------------------------------------------------------------------------|
| Exhibit 2-2. Representative reference cost estimates                                                        |
| Exhibit 2-3. Example Account 5A: parameter listing 15                                                       |
| Exhibit 2-4. Example Account 5A: parameter listing                                                          |
| Exhibit 3-1. Category matrix: PC                                                                            |
| Exhibit 3-2. Scaling parameters and exponents for categories 1-2: "Coal and Sorbent Handling" 20            |
| Exhibit 3-3. Scaling parameters and exponents for categories 1-2: "Coal and Sorbent Preparation and Feed"   |
| Exhibit 3-4. Scaling parameters and exponents for categories 1-2: "Feedwater and Miscellaneous BOP Systems" |
| Exhibit 3-5. Scaling parameters and exponents for categories 1-2: "Pulverized Coal Boiler and Accessories"  |
| Exhibit 3-6. Scaling parameters and exponents for categories 1-2: "Flue Gas Cleanup"                        |
| Exhibit 3-7. Scaling parameters and exponents for categories 1-2: "Ductwork and Stack" 23                   |
| Exhibit 3-8. Scaling parameters and exponents for categories 1-2: "Steam Turbine & Accessories"             |
| Exhibit 3-9. Scaling parameters and exponents for categories 1-2: "Cooling Water System" 24                 |

| Exhibit 3-10. Scaling parameters and exponents for categories 1-2: "Ash and Spent Sorbent<br>Handling Systems" |
|----------------------------------------------------------------------------------------------------------------|
| Exhibit 3-11. Scaling parameters and exponents for categories 1-2: "Accessory Electric Plant" 25               |
| Exhibit 3-12. Scaling parameters and exponents for categories 1-2: "Instrumentation & Control"                 |
| Exhibit 3-13. Scaling parameters and exponents for categories 1-2: "Improvements to Site" 26                   |
| Exhibit 3-14. Scaling parameters and exponents for categories 1-2: "Buildings & Structures" 26                 |
| Exhibit 3-15. Category matrix: IGCC                                                                            |
| Exhibit 3-16. Scaling parameters and exponents for categories 3-5: "Coal Handling"                             |
| Exhibit 3-17. Scaling parameters and exponents for categories 3-5: "Coal Preparation and Feed"                 |
| Exhibit 3-18. Scaling parameters and exponents for categories 3-5: "Feedwater and Miscellaneous BOP Systems"   |
| Exhibit 3-19. Scaling parameters and exponents for categories 3-5: "Gasifier, ASU, and Accessories"            |
| Exhibit 3-20. Scaling parameters and exponents for categories 3-5: "Syngas Cleanup"                            |
| Exhibit 3-21. Scaling parameters and exponents for categories 3-5: "Combustion Turbine and Accessories"        |
| Exhibit 3-22. Scaling parameters and exponents for categories 3-5: "HRSG, Ductwork, and Stack"                 |
| Exhibit 3-23. Scaling parameters and exponents for categories 3-5: "Steam Turbine & Accessories"               |
| Exhibit 3-24. Scaling parameters and exponents for categories 3-5: "Cooling Water System" 32                   |
| Exhibit 3-25. Scaling parameters and exponents for categories 3-5: "Slag Recovery & Handling"                  |
| Exhibit 3-26. Scaling parameters and exponents for categories 3-5: "Accessory Electric Plant" 33               |
| Exhibit 3-27. Scaling parameters and exponents for categories 3-5: "Instrumentation and Control"               |
| Exhibit 3-28. Scaling parameters and exponents for categories 3-5: "Improvements to Site" 34                   |
| Exhibit 3-29. Scaling parameters and exponents for categories 3-5: "Buildings and Structures" 35               |
| Exhibit 3-30. Category matrix: NGCC                                                                            |
| Exhibit 3-31. Scaling parameters and exponents for categories 6: "Feedwater and Miscellaneous BOP Systems"     |
| Exhibit 3-32. Scaling parameters and exponents for categories 6: "Flue Gas Cleanup"                            |
| Exhibit 3-33. Scaling parameters and exponents for categories 6: "Combustion Turbine and Accessories"          |

Systems Engineering & Analysis Directorate

| Exhibit 3-34. Scaling parameters and exponents for categories 6: "HRSG, Ductwork, and Stack"     |
|--------------------------------------------------------------------------------------------------|
| Exhibit 3-35. Scaling parameters and exponents for categories 6: "Steam Turbine and Accessories" |
| Exhibit 3-36. Scaling parameters and exponents for categories 6: "Cooling Water System" 39       |
| Exhibit 3-37. Scaling parameters and exponents for categories 6: "Accessory Electric Plant" 39   |
| Exhibit 3-38. Scaling parameters and exponents for categories 6: "Instrumentation and Control"   |
| Exhibit 3-39. Scaling parameters and exponents for categories 6: "Improvements to Site" 40       |
| Exhibit 3-40. Scaling parameters and exponents for categories 6: "Buildings and Structures" 41   |
| Exhibit 4-1. Revision table                                                                      |

# **Acronyms and Abbreviations**

| acfm            | Actual cubic feet per minute                 | MMBtu/hr  | Million British thermal units per                      |
|-----------------|----------------------------------------------|-----------|--------------------------------------------------------|
| ACI             | Activated carbon injection                   | N 475 7 A | hour                                                   |
| AGR             | Acid gas removal                             | MVA       | Mega volt-amps                                         |
| ASU             | Air separation unit                          | MW        | Megawatt                                               |
| BEC             | Bare erected cost                            | N/A       | Not applicable                                         |
| BOP<br>C        | Balance of plant<br>Coefficient in equations | NETL      | National Energy Technology<br>Laboratory               |
| CFBC            | Circulating fluidized bed                    | NGCC      | Natural gas combined cycle                             |
| erbe            | combustion                                   | $O_2$     | Oxygen                                                 |
| Circ.           | Circulating                                  | PC        | Pulverized coal                                        |
| $CO_2$          | Carbon dioxide                               | PRB       | Powder River Basin                                     |
| COS             | Carbonyl sulfide                             | psia      | Pounds per square inch absolute                        |
| CTG             | Combustion turbine generator                 | QGESS     | Quality Guidelines for Energy                          |
| DOE             | Department of Energy                         |           | System Studies                                         |
| DSI             | Dry sorbent injection                        | RBEC      | Reference plant bare erected cost                      |
| Exp             | Exponent in equations                        |           | in equations                                           |
| FGD             | Flue gas desulfurization                     | RC        | Reference cost in equations                            |
| ft <sup>3</sup> | Cubic feet                                   | RCon      | Reference plant's contingency in                       |
| GE              | General Electric                             | DD        | equations                                              |
| gpm             | Gallons per minute                           | RP        | Reference parameter in equations                       |
| Hg              | Mercury                                      | RTPC      | Reference total plant cost for subaccount in equations |
| HGCU            | Hot-gas-cleanup unit                         | SC        | Scaled cost in equations                               |
| HP              | High pressure                                | SCon      | Scaled plant's contingency,                            |
| HRSG            | Heat recovery steam generator                |           | percent                                                |
| I&C             | Instrumentation and control                  | SCR       | Selective catalytic reduction                          |
| IGCC            | Integrated gasification combined             | SDE       | Spray dryer evaporator                                 |
|                 | cycle                                        | SP        | Scaled parameter in equations                          |
| ISO             | International Standards                      | STG       | Steam turbine generator                                |
| 1 337           | Organization                                 | TPC       | Total plant cost                                       |
| kW              | Kilowatt                                     | TPD       | tons per day                                           |
| lb/hr           | Pounds per hour                              | USC       | Ultra-supercritical                                    |
| LT              | Low temperature                              | WGS       | Water gas shift                                        |
| MDEA            | Methyldiethanolamine                         |           | ÷                                                      |

# 1 Foreword

The National Energy Technology Laboratory (NETL) regularly updates legacy analysis with new studies and cases as the Department of Energy objectives change, technology performance improves, costs are reduced, regulations change, market drivers are established, fuel prices fluctuate, and any number of other relevant factors vary in the market. As legacy studies are updated by NETL, the underlying performance and cost of the cases presented changes, and as such, the methods for interpreting and scaling the cost estimates change. Therefore, it is important that NETL maintain public guidance documents associated with different sets of cost estimates that delineate how a specific set, based on report vintage and/or year published, should be scaled. This Quality Guidelines for Energy System Studies (QGESS) report, providing guidance on capital cost scaling, should generally be applied to NETL case costs included in the report "Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4" (Bituminous Baseline Revision 4), [1] or any cases derived from the cases presented in the referenced report.

# 2 Introduction

Costs are frequently required as part of systems analysis work at NETL. Many of the cost results provided as part of systems analysis work were created with the use of scaling, since obtaining new vendor-supplied cost quotes for each category developed by NETL would be prohibitively time consuming and costly. Additionally, many of the technologies being investigated by NETL have not progressed far enough to have quotable costs.

The costs are scaled from a quote for a similar plant configuration by use of various equations that typically employ at least one process parameter (e.g., coal-feed rate, oxidant-feed rate) and often an exponent. The primary purpose of the exponent is to account for economies of scale (i.e., as equipment size gets larger, it gets progressively cheaper to add additional capacity).

The purpose of this section of the QGESS report is to provide a standard basis for scaling costs, with specific emphasis on scaling exponents. The intention of having a standardized document is to provide guidelines for proper procedures to reduce the potential of errors and increase credibility through consistency.

This document contains a listing of frequently used pieces of equipment and their corresponding scaling exponent for various plant types, along with their ranges of applicability. This document also details the equations to be used with each exponent.

The scaling exponents used in systems analysis work are logarithmically derived from previously obtained vendor supplied cost quotes using Equation 1.

$$Exp = \frac{\ln \left(\frac{RC_1}{RC_2}\right)}{\ln \left(\frac{RP_1}{RP_2}\right)}$$

Equation 1

Where:

National Energy Technology Laboratory

Exp – Exponent RC – Reference Cost

RP – Reference Parameter

Exhibit 2-1 provides a listing of the categories used in this document and a description of the types of technologies to which the associated exponents are applicable. Exhibit 2-2 provides a listing of reference reports for the various categories. Since this document has been updated based on the recently released Bituminous Baseline Revision 4, this guidance is only applicable to those cases as of the publication of this QGESS. As future studies build on those Revision 4 cases, those future cases will also be subject to the guidance contained in this QGESS.

The listings are divided into three major technologies frequently analyzed at NETL: pulverized coal (PC), integrated gasification combined cycle (IGCC), and natural gas combined cycle (NGCC).

| Category | Technologies                                                                                                         |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| РС       |                                                                                                                      |  |  |  |
| 1        | Supercritical <sup>A</sup> PC, air-fired, with and without CO <sub>2</sub> capture, Illinois No. 6 coal              |  |  |  |
| 2        | Subcritical PC, air-fired, with and without CO <sub>2</sub> capture, Illinois No. 6 coal                             |  |  |  |
| IGCC     |                                                                                                                      |  |  |  |
| 3        | Two-stage, slurry-feed, oxygen-blown gasifier with and without CO <sub>2</sub> capture, Illinois No. 6 coal          |  |  |  |
| 4        | Single-stage, slurry-feed, oxygen-blown gasifier with and without CO <sub>2</sub> capture, Illinois No. 6 coal       |  |  |  |
| 5        | Single-stage, dry-feed, oxygen-blown, up-flow gasifier with and without CO <sub>2</sub> capture, Illinois No. 6 coal |  |  |  |
| NGCC     |                                                                                                                      |  |  |  |
| 6        | Natural gas, air-fired, with and without $CO_2$ capture                                                              |  |  |  |

#### Exhibit 2-1. Category matrix

<sup>A</sup>In prior versions of this guidance document, ultra-supercritical (USC) PC plants were also included in this category, with the following direction: apply 10-percent process contingency to the line item PC Boiler & Accessories (Account 4.9), and a 15-percent process contingency to the line item Steam Turbine Generator & Accessories (Account 8.1). USC plants could be included in this category using the provided guidance for Revision 4 cases, but NETL reports have not publicly demonstrated application of this guidance to Revision 4 cases to date.

| Category                                                                                                                               | Technologies Report Hyperlinks                                                                                                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| РС                                                                                                                                     |                                                                                                                                       |  |  |  |  |
| 1                                                                                                                                      | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4 [1] |  |  |  |  |
| 2 Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal<br>Natural Gas to Electricity Revision 4 [1] |                                                                                                                                       |  |  |  |  |
| IGCC                                                                                                                                   |                                                                                                                                       |  |  |  |  |
| 3                                                                                                                                      | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4 [1] |  |  |  |  |
| 4                                                                                                                                      | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4 [1] |  |  |  |  |
| 5                                                                                                                                      | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4 [1] |  |  |  |  |
| NGCC                                                                                                                                   |                                                                                                                                       |  |  |  |  |
| 6                                                                                                                                      | Cost and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4 [1] |  |  |  |  |

#### Exhibit 2-2. Representative reference cost estimates

### 2.1 Limitations of Scaling Approach

It is important to note that when scaling costs, the technologies must be as similar as possible. For instance, if scaling a plant that fires Illinois No. 6, both the scaling exponents and the reference cost should be for a plant that fires Illinois No. 6. The same is true for the following specifications as well:

- Oxidant type (air or oxygen)
- Elevation/location (International Standards Organization [ISO], North Dakota, Montana, etc.)
- Plant type (sub-critical, supercritical, ultra-supercritical, etc.)
- Technology type (PC, IGCC, NGCC, etc.)
- Emissions control technologies (with/without CO<sub>2</sub> capture, with/without flue gas desulfurization [FGD], etc.)

For many of the items provided in this report, the approach presented scales on a single parameter for a given account. In reality, some accounts, particularly some of the major equipment items, may be impacted by more than one parameter. For example, a line item may be scaled on one or more flows/outputs but should, in reality, be scaled on multiple flows/outputs and on both pressure and temperature, or thermal duty and delta temperature. While the single-parameter approach can be used for high-level scaling, it is recommended that individual items/systems be scaled from the most similar reference possible, particularly for the cost drivers.

There are limitations on the ranges that can accurately be addressed by the scaling approach. There can be step changes in pricing at certain equipment sizes that may not be captured by the scaling exponents. Care should be taken in applying the scaling factors when there is a large

National Energy Technology Laboratory

percentage difference between the scaling parameters. This is particularly true for the major equipment items. For example, it is known that the combustion turbine is an incremental cost and is specific to one level of performance.

The configuration also has a significant impact on costs. In addition to the base scaling, adjustments must be made for considerations such as number of trains for a particular system and equipment redundancy (i.e.,  $2 \times 100$  percent versus  $3 \times 50$  percent).

The plant location is another issue that must be kept in mind when scaling costs. Project location and labor basis can have a significant impact on overall project costs. An additional adjustment to the labor component may be required to reflect local wage rates, local labor productivity, and a union versus non-union environment.

It is imperative that the reader understand that even subtle differences in equipment specifications can result in significant cost impacts. Adjustments, often in the form of additions or deductions, must be incorporated to address these elements. These could include items such as unique site considerations (piles, access requirements, salt water environment), or specific equipment requirements (stack height, re-heat versus non re-heat, single pressure versus multiple pressure, turbine backpressure).

Finally, the cost basis date must be considered. Equipment, material, and labor costs may need to be escalated or de-escalated to adjust for the differences between the cost basis date for the scaled estimate and the reference estimate. Additionally, significant elapsed time between the reference cost date and the desired date for the scaled estimate could potentially encompass technology or approach changes for a specific item and/or system.

The scaling methodology reported here is specifically developed from and intended for use with December 2018 cost data.

In general, the approach presented in this report is valid for high-level evaluation only. The accuracy of the factored estimate will be less than or equal to that for a reference estimate.

## 2.2 Methodology

When developing a cost estimate for a plant that requires scaled costing, determine the category type from the category matrix in Exhibit 2-1 that exhibits as much commonality as possible when compared to the plant of interest. Once the category type has been determined, an estimate for a plant of the same type must be obtained for use as a reference. A listing of reports containing example reference cost estimates for each category type is provided in Exhibit 2-2. Reference cost estimates may also be found on the NETL Energy Analysis website.<sup>1</sup>

If the plant of interest does not match any of the available reference cost estimates, select one that most suitably matches, taking care to minimize the impact from the limitations of the scaling approach detailed in Section 3.

For plants of interest that differ significantly from any available reference cost estimates, the plant of interest may still have many of the same subsystems as one or more of the reference cost

<sup>&</sup>lt;sup>1</sup> <u>http://www.netl.doe.gov/research/energy-analysis</u>

National Energy Technology Laboratory

estimates. If so, then the reference cost estimate used may be a combination of various individual reference cost estimates, matched based on subaccount.

Using the category type obtained from the category matrix, utilize Exhibit 3-2 through Exhibit 3-40 to obtain the scaling parameters, exponents, and coefficients. The scaling parameter values associated with the reference cost estimate will be taken from the report from which the reference cost estimate was obtained.

Determine the scaling parameter values for the plant of interest and compare them to the range of applicability provided in Exhibit 3-2 through Exhibit 3-40. If the value is outside the recommended range, significant deviation from realistic results could occur. Given that this guidance is only currently applicable to a small set of published cases, the ranges presented are small and scaling parameter values may be outside the ranges. It is expected that the ranges, in reality, would be capable of being applied to the median range  $\pm 25$  percent.

Once the scaling parameters, exponents, and coefficients as well as the reference cost and scaling parameter values are obtained, the scaled cost estimate can be developed by utilizing the equations provided in Section 2.3. Specific guidelines are available in subsections, as follows:

- Section 3.1 PC
- Section 3.2 IGCC
- Section 3.3 NGCC

The following subsection provides an example for developing cost estimates.

### 2.3 Scaled Cost Estimate Development Examples

The cost estimate development example shown in this section is identical to the example shown in prior versions of this QGESS report. [2] This example was maintained to demonstrate the initial comparison of subaccount matches.

### The plant of interest:

The plant of interest in this example is an oxygen-blown two-stage slurry feed gasifier, firing Powder River Basin (PRB) coal at ISO elevation. The plant is equipped with CO<sub>2</sub> capture and compression systems and utilizes a wet cooling tower.

### **Category type:**

Category 7 from the legacy QGESS category matrix [2] most suitably matches the plant of interest as it shares the following items in common:

- 1. Two-stage slurry feed gasifier
- 2. Oxygen-blown
- 3.  $CO_2$  capture
- 4. PRB coal

### **Reference plant:**

No exact match is available for a 'reference plant' as a comparison to the 'plant of interest.' Therefore, the 'reference plant' will have to be a combination of various 'reference plants' based on subaccount matches. The reference plants selected are Case S4B from the Category 7 report "Cost and Performance Baseline for Fossil Energy Plants - Volume 3a: Low Rank Coal to Electricity: IGCC Cases" [3] and Case 4 from a legacy version of the Category 8 report, "Cost and Performance Baseline for Fossil Energy Plants, Volume 1b: Bituminous Coal (IGCC) to Electricity Revision 2b - Year Dollar Update." [4]

Case 4 matches:

- 1. Cooling type
- 2. Elevation
- 3.  $CO_2$  capture
- 4. Gasifier type

Case S4B matches:

- 1. Coal type
- 2. CO<sub>2</sub> capture
- 3. Gasifier type

It was decided that all accounts that have direct influence from coal will be scaled using Case S4B. All other accounts will be scaled using Case 4.

Accounts scaled using Case S4B include:

- 1. Coal and Sorbent Handling
- 2. Coal and Sorbent Preparation and Feed
- 4. Gasifier and Accessories
- 5A. Gas Cleanup and Piping
- 6. Combustion Turbine and Accessories

The account that will be utilized in the example will be Account 5A "Gas Cleanup and Piping."

#### **Obtain Scaling Parameters**

Exhibit 3-21 from the legacy QGESS [2] contains the scaling parameters, exponents, coefficients, and ranges for Account 5A of the selected Category 7 plant type.

Exhibit 2-3 provides the account number, item description, scaling parameter, exponent and coefficient, range of applicability, reference parameter value, reference cost, and scaling parameter values that were obtained from the legacy QGESS for Case S4B Category 7. [2]

| Account<br>Number | Item<br>Description       | Parameter <sup>A</sup>                  | Exponent<br>[Coefficient] <sup>A</sup> | Range <sup>A</sup>    | Reference<br>Parameter <sup>B</sup> | Case S4B Reference Costs in June<br>2007 1000\$ (Equipment/TPC) <sup>B</sup> | Scaling<br>Parameter <sup>c</sup> |
|-------------------|---------------------------|-----------------------------------------|----------------------------------------|-----------------------|-------------------------------------|------------------------------------------------------------------------------|-----------------------------------|
| 5A.1              | Selexol<br>(Double)       | Gas flow to<br>AGR, acfm                | 0.79                                   | 5,000–30,000          | 11,389                              | \$73,047/\$210,112                                                           | 12,068                            |
| 5A.2              | Elemental<br>Sulfur Plant | Sulfur<br>Production,<br>lb/hr          | 0.67                                   | 200–44,000            | 4,901                               | \$5,613/\$18,396                                                             | 5,339                             |
| 5A.3              | Mercury<br>Removal        | Hg bed carbon<br>fill, ft <sup>3</sup>  | See Note <sup>D</sup>                  | 2,000–35,000          | N/A                                 | \$1,328/\$3,218                                                              | 3,916                             |
| 5A.4              | Shift<br>Reactors         | WGS Catalyst<br>volume, ft <sup>3</sup> | 0.80                                   | 1,000–11,000          | 000 6,257 \$8,762/\$16,160          |                                                                              | 6,692                             |
| 5A.6              | Blowback<br>Gas Systems   | Candle filter flow rate, acfm           | 0.30                                   | 2,000–96,000          | 24,282                              | \$2,030/\$3,368                                                              | 26,838                            |
| 5A.7              | Fuel Gas<br>Piping        | Fuel gas flow,<br>lb/hr                 | 0.72                                   | 185,000–<br>2,490,000 | 202,347                             | \$0/\$1,747                                                                  | 221,487                           |
| 5A.9              | HGCU<br>Foundations       | Sulfur<br>Production,<br>lb/hr          | 0.79                                   | 200–44,000            | 4,901                               | \$0/\$1,853                                                                  | 5,339                             |

Exhibit 2-3. Example Account 5A: parameter listing

<sup>A</sup>Information from exhibits in the legacy QGESS [2]

<sup>B</sup>Information from the 'reference' plant report

<sup>c</sup>Scaling parameter from the 'plant of interest'

<sup>D</sup>The exponent 1.57 is used with PRB coal, the exponent 1.64 is used with Illinois No. 6 coal without CO<sub>2</sub> capture, and the exponent 1.59 is used with Illinois No. 6 coal with CO<sub>2</sub> capture. The coefficient 0.0141 is used with all instances.

#### Calculating scaled cost estimates

Unless otherwise specified, calculating the material cost, labor costs, and equipment cost differs only in the value used as the reference plants reference cost (RC). When calculating the scaled plant's equipment cost, one should use the reference plant's equipment cost as the reference cost; likewise, when calculating the scaled plant's material cost, one should use the reference plant's material cost as the reference plant's material cost is the bare erected cost (BEC).

The process contingency, project contingency, engineering construction management, home office, and fee are based on a percentage of the BEC. These percentages can be calculated by using Equation 2:

$$SCon = \frac{RCon}{RBEC}$$
 Equation 2

Where:

SCon – Scaled plant's contingency, %

RCon – Reference plant's contingency, \$

RBEC – Reference plant's BEC, \$

The scaled plant's contingency percentage is multiplied by the scaled plant's BEC to get the scaled plant's contingency dollar value. The process is repeated for each of the individual contingencies.

The sum of the BEC and the contingencies is the total plant cost (TPC) for each sub-account.

The example calculations will focus on determining a scaled Equipment Cost for each subaccount. As such, subaccounts 5A.7 and 5A.9 will not be demonstrated, as their equipment reference value is \$0.

By comparing the scaling parameter to the range of applicability, it is confirmed that it is suitable to develop a scaled cost estimate for the plant of interest using the scaling parameters, exponents, and coefficients obtained from the legacy QGESS document. [2]

For all categories, unless otherwise specified, Equation 3 is used to scale costs.

$$SC = RC * \left(\frac{SP}{RP}\right)^{Exp}$$
 Equation 3

Where:

Exp-Exponent

RC-Reference cost

RP – Reference parameter

SC - Scaled cost

SP – Scaling parameter

For this example calculation, IGCC categories that utilize a coefficient in addition to an exponent use Equation 4.

$$SC = \frac{RC}{RTPC} * C * SP^{Exp}$$
 Equation 4

Where:

C – Coefficient Exp – Exponent RC– Reference cost RTPC – Reference total plant cost for subaccount SC – Scaled cost SP – Scaling parameter

Account 5A.1 will use Equation 3 with the parameter "Gas flow to AGR" in actual  $ft^3$ /min. The equation is as follows:

$$SC = \$76,466 = \$73,047 * \left(\frac{12,068\frac{ft^3}{min}}{11,389\frac{ft^3}{min}}\right)^{0.79}$$
Example 1

Based on the note for Account 5A.3, it contains a coefficient. Therefore, this account will use Equation 4 with the parameter "Hg bed carbon fill" in ft<sup>3</sup>. The equation is as follows:

$$SC = $2,544 = \frac{$1,328}{$3,218} * 0.0141 * 3,916 ft^3$$
 Example 2

All other subaccounts will use Equation 3. Exhibit 2-4 provides the results of the calculations and compares them to the reference value.

| Account<br>Number | Item<br>Description       | Parameter                            | Reference<br>Parameter | Reference Cost<br>(Equipment) | Scaling<br>Parameter | Scaled Cost<br>(Equipment) |
|-------------------|---------------------------|--------------------------------------|------------------------|-------------------------------|----------------------|----------------------------|
| 5A.1              | Selexol (Double)          | Gas flow to AGR, acfm                | 11,389                 | \$73,047                      | 12,068               | \$76,466                   |
| 5A.2              | Elemental<br>Sulfur Plant | Sulfur Production, lb/hr             | 4,901                  | \$5,613                       | 5,339                | \$5,944                    |
| 5A.3              | Mercury<br>Removal        | Hg bed carbon fill, ft <sup>3</sup>  | N/A                    | \$1,328                       | 3,916                | \$2,544                    |
| 5A.4              | Shift Reactors            | WGS Catalyst volume, ft <sup>3</sup> | 6,257                  | \$8,762                       | 6,692                | \$9,246                    |
| 5A.6              | Blowback Gas<br>Systems   | Candle filter flow rate, acfm        | 24,282                 | \$2,030                       | 26,838               | \$2,092                    |

#### Exhibit 2-4. Example Account 5A: parameter listing

In all instances, the range is intended to present the reader with the ranges at which the exponents have already been utilized. It is expected that the ranges, in reality, would be capable of being applied to the median range  $\pm 25$  percent.

For all categories, unless otherwise specified, Equation 5 is used to scale costs.

$$SC = RC * \left(\frac{SP}{RP}\right)^{Exp}$$
 Equation 5

Where:

- Exp-Exponent
- **RC** Reference cost
- **RP** Reference parameter
- SC Scaled cost
- SP Scaling parameter

### 3.1 PC

Exhibit 3-1 provides the category matrix for the PC categories.

#### Exhibit 3-1. Category matrix: PC

| Category | Technologies                                                                                   |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PC       |                                                                                                |  |  |  |  |  |
| 1        | Supercritical <sup>A</sup> PC, air-fired, with and without $CO_2$ capture, Illinois No. 6 coal |  |  |  |  |  |
| 2        | Subcritical PC, air-fired, with and without $CO_2$ capture, Illinois No. 6 coal                |  |  |  |  |  |

<sup>A</sup>In prior versions of this guidance document, ultra-supercritical (USC) PC plants were also included in this category, with the following direction: apply 10-percent process contingency to the line item PC Boiler & Accessories (Account 4.9), and a 15-percent process contingency to the line item Steam Turbine Generator & Accessories (Account 8.1). USC plants could be included in this category using the provided guidance for Revision 4 cases, but NETL reports have not publicly demonstrated application of this guidance to Revision 4 cases to date.

Exhibit 3-2 through Exhibit 3-14 contains the scaling parameters and exponents that are suitable for PC plants at the given ranges.

| Account Number Item Description |                                     | Parameter                           | Exponent |      | Range           |
|---------------------------------|-------------------------------------|-------------------------------------|----------|------|-----------------|
| Category                        |                                     | 1-2                                 | 1        | 2    | 1-2             |
| 1                               |                                     | COAL & SORBENT HANDLING             |          |      |                 |
| 1.1                             | Coal Receive & Unload               | Coal Feed Rate, lb/hr               | 0.62     | 0.62 | 472,000–635,000 |
| 1.2                             | Coal Stackout & Reclaim             | Coal Feed Rate, lb/hr               | 0.62     | 0.62 | 472,000–635,000 |
| 1.3                             | Coal Conveyors & Yard Crushing      | Coal Feed Rate, lb/hr               | 0.62     | 0.62 | 472,000–635,000 |
| 1.4                             | Other Coal Handling                 | Coal Feed Rate, lb/hr               | 0.62     | 0.62 | 472,000–635,000 |
| 1.5                             | Sorbent Receive & Unload            | Limestone Feed Rate, lb/hr          | 0.66     | 0.62 | 45,600–61,400   |
| 1.6                             | Sorbent Stackout & Reclaim          | Limestone Feed Rate, lb/hr          | 0.64     | 0.64 | 45,600–61,400   |
| 1.7                             | Sorbent Conveyors                   | Limestone Feed Rate, lb/hr          | 0.65     | 0.64 | 45,600–61,400   |
| 1.8                             | Other Sorbent Handling              | Limestone Feed Rate, lb/hr          | 0.64     | 0.64 | 45,600–61,400   |
| 1.9                             | Coal & Sorbent Handling Foundations | Coal and Limestone Feed Rate, lb/hr | 0.62     | 0.62 | 517,700–695,800 |

#### Exhibit 3-3. Scaling parameters and exponents for categories 1-2: "Coal and Sorbent Preparation and Feed"

| Account Number Item Description |                                   | Parameter                           | r Expo |      | Range           |  |
|---------------------------------|-----------------------------------|-------------------------------------|--------|------|-----------------|--|
| Category                        |                                   | 1-2                                 | 1      | 2    | 1-2             |  |
| 2                               | COAL & SORBENT PREPARATION & FEED |                                     |        |      |                 |  |
| 2.1                             | Coal Crushing & Drying            | Coal Feed Rate, lb/hr               | 0.66   | 0.66 | 472,000–635,000 |  |
| 2.2                             | Prepared Coal Storage & Feed      | Coal Feed Rate, lb/hr               | 0.66   | 0.66 | 472,000–635,000 |  |
| 2.5                             | Sorbent Preparation Equipment     | Limestone Feed Rate, lb/hr          | 0.65   | 0.65 | 45,600–61,400   |  |
| 2.6                             | Sorbent Storage & Feed            | Limestone Feed Rate, lb/hr          | 0.65   | 0.65 | 45,600–61,400   |  |
| 2.9                             | Coal & Sorbent Feed Foundation    | Coal and Limestone Feed Rate, lb/hr | 0.64   | 0.64 | 517,700–695,800 |  |

National Energy Technology Laboratory

#### Office of Program Performance and Benefits

| Account Number Item Description |                                          | Parameter                       | Exponent |      | Range               |
|---------------------------------|------------------------------------------|---------------------------------|----------|------|---------------------|
|                                 | Category                                 | 1-2                             | 1        | 2    | 1-2                 |
| 3                               | FEEDW                                    | ATER & MISCELLANEOUS BOP SYST   | EMS      |      |                     |
| 3.1                             | Feedwater System                         | Feedwater Flow (HP Only), lb/hr | 0.69     | 0.68 | 4,120,000-5,317,000 |
| 3.2                             | Water Makeup & Pretreating               | Raw Water Withdrawal, gpm       | 0.73     | 0.75 | 6,000–10,700        |
| 3.3                             | Other Feedwater Subsystems               | Feedwater Flow (HP Only), lb/hr | 0.89     | 0.89 | 4,120,000-5,317,000 |
| 3.4                             | Service Water Systems                    | Raw Water Withdrawal, gpm       | 0.80     | 0.80 | 6,000–10,700        |
| 3.5                             | Other Boiler Plant Systems               | Feedwater Flow (HP Only), lb/hr | 0.90     | 0.90 | 4,120,000-5,317,000 |
| 3.6                             | Natural Gas Pipeline and Start-up System | Total Fuel Feed, lb/hr          | 0.49     | 0.51 | 472,000–635,000     |
| 3.7                             | Waste Water Treatment Equipment          | Process Water Discharge, gpm    | 0.71     | 0.73 | 1,200–3,100         |
| 3.8                             | Spray Dryer Evaporator                   | Gas Flow to SDE, acfm           | 0.75     | 0.75 | 123,000–166,000     |
| 3.9                             | Miscellaneous Plant Equipment            | Total Fuel Feed, lb/hr          | 0.25     | 0.25 | 472,000–635,000     |

#### Exhibit 3-4. Scaling parameters and exponents for categories 1-2: "Feedwater and Miscellaneous BOP Systems"

Exhibit 3-5. Scaling parameters and exponents for categories 1-2: "Pulverized Coal Boiler and Accessories"

| Account Number Item Description |                                                   | Parameter                        | Exponent |      | Range               |  |
|---------------------------------|---------------------------------------------------|----------------------------------|----------|------|---------------------|--|
|                                 | Category                                          | 1-2                              | 1        | 2    | 1-2                 |  |
| 4                               |                                                   | ORIES                            |          |      |                     |  |
| 4.9                             | PC Boiler & Accessories (Air-Fired <sup>A</sup> ) | Feedwater Flow (HP Only), lb/hr  | 0.76     | 0.78 | 4,120,000-5,317,000 |  |
| 4.10                            | SCR System                                        | Gas Flow to DSI, acfm            | 0.0      | 59   | 2,489,900–3,346,700 |  |
| 4.11                            | Boiler Balance of Plant                           | Coal Feed Rate, lb/hr            | 0.0      | 59   | 472,000–635,000     |  |
| 4.12                            | Primary Air System                                | Primary Air Flow Rate, acfm      | 0.0      | 59   | 249,300–335,200     |  |
| 4.13                            | Secondary Air System                              | Forced Draft Air Flow Rate, acfm | 0.0      | 59   | 811,700-1,091,100   |  |
| 4.14                            | Induced Draft Fans                                | Gas Flow from Baghouse, acfm     | 0.0      | 59   | 1,717,500–2,308,500 |  |
| 4.15                            | Major Component Rigging                           | Coal Feed Rate, lb/hr            | 0.69     |      | 472,000–635,000     |  |
| 4.16                            | Boiler Foundations                                | Coal Feed Rate, lb/hr            | 0.0      | 59   | 472,000–635,000     |  |

<sup>A</sup>Prior versions of this guidance also included circulating fluidized bed combustion (CFBC), oxy-fired PC, and PC with biomass case guidance. These cases have not been developed to date using the Revision 4 cases as a basis, and therefore, no guidance is currently available for these cases.

National Energy Technology Laboratory

Office of Program Performance and Benefits

| Account Number Item Description |                                               | Parameter                                                            |                   | nent | Range                                       |
|---------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-------------------|------|---------------------------------------------|
|                                 | Category                                      | 1-2                                                                  | 1                 | 2    | 1-2                                         |
| 5                               |                                               | FLUE GAS CLEANUP                                                     |                   |      |                                             |
| 5.1                             | Cansolv CO <sub>2</sub> Removal System        | CO <sub>2</sub> Product Flow Rate, lb/hr/<br>Inlet to Absorber, acfm | 0.60 <sup>A</sup> |      | 1,281,000-1,348,000/<br>1,865,000-1,962,000 |
| 5.2                             | Wet FGD Absorber Vessels & Accessories        | Wet FGD Exit Gas Flow, acfm                                          | 0.73              |      | 1,459,000–1,962,000                         |
| 5.3                             | Other FGD                                     | Wet FGD Exit Gas Flow, acfm                                          | 0.73              |      | 1,459,000–1,962,000                         |
| 5.4                             | CO <sub>2</sub> Compression & Drying          | Compressor Auxiliary Load, kW <sup>B</sup>                           | 0.61              |      | 17,000–46,700                               |
| 5.5                             | CO <sub>2</sub> Compressor Aftercooler        | Heat Exchanger Duty, MMBtu/hr                                        | 0.                | 83   | 32–88                                       |
| 5.6                             | Mercury Removal (DSI/ACI)                     | Brominated Activated Carbon Injection Rate,<br>Ib/hr                 | 0.78              | 0.80 | 100–140                                     |
| 5.9                             | Particulate Removal (Bag House & Accessories) | Gas Flow to Baghouse, acfm                                           | 0.79              |      | 1.691.000-2,274,000                         |
| 5.12                            | Gas Cleanup Foundations                       | Coal Feed Rate, lb/hr                                                | 0.79              |      | 472,000–635,000                             |
| 5.13                            | Gypsum Dewatering System                      | Gypsum Production Rate, lb/hr                                        | 0.58              | 0.60 | 69,400–93,300                               |

Exhibit 3-6. Scaling parameters and exponents for categories 1-2: "Flue Gas Cleanup"

<sup>A</sup>To scale the Cansolv CO<sub>2</sub> Removal System, 40% of the cost is scaled using the parameter Inlet to Absorber, (acfm); the remaining 60% is scaled using the parameter CO<sub>2</sub> Product Flow Rate (lb/hr).

<sup>B</sup>Compressor Auxiliary Load scaling parameter is valid only for the same suction (28.9 psia) and discharge (2,214.7 psia) pressures assumed in process modeling.

| Account Number | Item Description         | Parameter               | Exponent |    | Range               |  |  |  |
|----------------|--------------------------|-------------------------|----------|----|---------------------|--|--|--|
| Category       |                          | 1-2                     | 1 2      |    | 1-2                 |  |  |  |
| 7              | DUCTWORK & STACK         |                         |          |    |                     |  |  |  |
| 7.3            | Ductwork                 | Total Fuel Feed, lb/hr  | 0.       | 29 | 472,000–635,000     |  |  |  |
| 7.4            | Stack                    | Gas Flow to Stack, acfm | 0.06     |    | 1,314,000-1,522,000 |  |  |  |
| 7.5            | Duct & Stack Foundations | Total Fuel Feed, lb/hr  | 0.       | 06 | 472,000–635,000     |  |  |  |

Exhibit 3-7. Scaling parameters and exponents for categories 1-2: "Ductwork and Stack"

Exhibit 3-8. Scaling parameters and exponents for categories 1-2: "Steam Turbine & Accessories"

| Account Number | unt Number Item Description Parameter |                                 | Exponent |                | Range               |  |
|----------------|---------------------------------------|---------------------------------|----------|----------------|---------------------|--|
| Category       |                                       | 1-2                             | 1 2      |                | 1-2                 |  |
| 8              | STEAM TURBINE & ACCESSORIES           |                                 |          |                |                     |  |
| 8.1            | Steam Turbine Generator & Accessories | Steam Turbine Gross Power, MW   | 0.70     |                | 685–776             |  |
| 8.2            | Steam Turbine Plant Auxiliaries       | Steam Turbine Gross Power, MW   | 0.70     | 0.71           | 685–776             |  |
| 8.3a           | Condenser & Auxiliaries               | Condenser Duty, MMBtu/hr        | 1.04     | 0.86           | 2,010–2,650         |  |
| 8.3b           | Air Cooled Condenser                  | Condenser Duty, MMBtu/hr        | N/       | Ά <sup>Α</sup> | N/A                 |  |
| 8.4            | Steam Piping                          | Feedwater Flow (HP Only), lb/hr | 0.       | 70             | 4,120,000-5,317,000 |  |
| 8.5            | Turbine Generator Foundations         | Steam Turbine Gross Power, MW   | 0.       | 71             | 685–776             |  |

<sup>A</sup>Cases from Revision 4 exclusively use wet cooling. Future cases that may use air cooling should insert the Air-Cooled Condenser account here. Guidance on scaling has not yet been developed.

| Account Number Item Description |                                | Parameter                        | Exponent |      | Range           |
|---------------------------------|--------------------------------|----------------------------------|----------|------|-----------------|
|                                 | Category                       | 1-2                              | 1        | 2    | 1-2             |
| 9                               |                                |                                  |          |      |                 |
| 9.1                             | Cooling Towers                 | Cooling Tower Duty, MMBtu/hr     | 0.77     | 0.76 | 2,550–4,880     |
| 9.2                             | Circulating Water Pumps        | Circulating Water Flow Rate, gpm | 0.86     |      | 255,000–498,000 |
| 9.3                             | Circ. Water System Auxiliaries | Circulating Water Flow Rate, gpm | 0.       | 63   | 255,000–498,000 |
| 9.4                             | Circ. Water Piping             | Circulating Water Flow Rate, gpm | 0.       | 63   | 255,000–498,000 |
| 9.5                             | Make-up Water System           | Raw Water Withdrawal, gpm        | 0.49     |      | 6,000–10,700    |
| 9.6                             | Component Cooling Water System | Circulating Water Flow Rate, gpm | 0.63     |      | 255,000–498,000 |
| 9.7                             | Circ. Water System Foundations | Circulating Water Flow Rate, gpm | 0.       | 58   | 255,000–498,000 |

Exhibit 3-9. Scaling parameters and exponents for categories 1-2: "Cooling Water System"

#### Exhibit 3-10. Scaling parameters and exponents for categories 1-2: "Ash and Spent Sorbent Handling Systems"

| Account Number | Item Description                     | Parameter                  | Exponent | Range         |  |  |  |  |  |
|----------------|--------------------------------------|----------------------------|----------|---------------|--|--|--|--|--|
|                | Category                             |                            | 1 2      | 1-2           |  |  |  |  |  |
| 10             | ASH & SPENT SORBENT HANDLING SYSTEMS |                            |          |               |  |  |  |  |  |
| 10.6           | Ash Storage Silos                    | Total Ash Flow Rate, lb/hr | 0.56     | 52,000–70,400 |  |  |  |  |  |
| 10.7           | Ash Transport & Feed Equipment       | Total Ash Flow Rate, lb/hr | 0.56     | 52,000–70,400 |  |  |  |  |  |
| 10.9           | Ash/Spent Sorbent Foundation         | Total Ash Flow Rate, lb/hr | 0.56     | 52,000–70,400 |  |  |  |  |  |

| Account Number Item Description |                            | Parameter                     | Exponent |   | Range          |
|---------------------------------|----------------------------|-------------------------------|----------|---|----------------|
|                                 | Category                   | 1-2                           | 1        | 2 | 1-2            |
| 11                              |                            | ACCESSORY ELECTRIC PLANT      |          |   |                |
| 11.1                            | Generator Equipment        | Steam Turbine Gross Power, MW | 0.5      | 7 | 685–776        |
| 11.2                            | Station Service Equipment  | Auxiliary Load, kW            | 0.43     |   | 35,000–125,800 |
| 11.3                            | Switchgear & Motor Control | Auxiliary Load, kW            | 0.43     |   | 35,000–125,800 |
| 11.4                            | Conduit & Cable Tray       | Auxiliary Load, kW            | 0.43     |   | 35,000–125,800 |
| 11.5                            | Wire & Cable               | Auxiliary Load, kW            | 0.43     | 3 | 35,000–125,800 |
| 11.6                            | Protective Equipment       | Auxiliary Load, kW            | 0.0      | C | 35,000–125,800 |
| 11.7                            | Standby Equipment          | Steam Turbine Gross Power, MW | 0.46     |   | 685–776        |
| 11.8                            | Main Power Transformers    | STG Rating, MVA               | 0.70     |   | 760–860        |
| 11.9                            | Electrical Foundations     | Steam Turbine Gross Power, MW | 0.69     |   | 685–776        |

Exhibit 3-11. Scaling parameters and exponents for categories 1-2: "Accessory Electric Plant"

Exhibit 3-12. Scaling parameters and exponents for categories 1-2: "Instrumentation & Control"

| Account Number | Item Description                     | Parameter          | Exponent | Range          |  |  |  |
|----------------|--------------------------------------|--------------------|----------|----------------|--|--|--|
|                | Category                             | 1-2                | 1 2      | 1-2            |  |  |  |
| 12             | INSTRUMENTATION & CONTROL            |                    |          |                |  |  |  |
| 12.1           | PC Boiler Control Equipment          | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |
| 12.3           | Steam Turbine Control Equipment      | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |
| 12.5           | Signal Processing Equipment          | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |
| 12.6           | Control Boards, Panels & Racks       | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |
| 12.7           | Distributed Control System Equipment | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |
| 12.8           | Instrument Wiring & Tubing           | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |
| 12.9           | Other I&C Equipment                  | Auxiliary Load, kW | 0.13     | 35,000–125,800 |  |  |  |

| Account Number | Item Description     | Parameter                   | Exponent |    | Range             |  |                   |
|----------------|----------------------|-----------------------------|----------|----|-------------------|--|-------------------|
| Category       |                      | 1-2                         | 12       |    | 1-2               |  |                   |
| 13             | IMPROVEMENTS TO SITE |                             |          |    |                   |  |                   |
| 13.1           | Site Preparation     | BEC (Minus Acts. 13 and 14) | 0.2      | 20 | 883,600-1,622,000 |  |                   |
| 13.2           | Site Improvements    | BEC (Minus Acts. 13 and 14) | 0.20     |    | 0.20              |  | 883,600-1,622,000 |
| 13.3           | Site Facilities      | BEC (Minus Acts. 13 and 14) | 0.20     |    | 883,600-1,622,000 |  |                   |

Exhibit 3-13. Scaling parameters and exponents for categories 1-2: "Improvements to Site"

Exhibit 3-14. Scaling parameters and exponents for categories 1-2: "Buildings & Structures"

| Account Number | Item Description Parameter           |                                   | Ехро | nent | Range             |
|----------------|--------------------------------------|-----------------------------------|------|------|-------------------|
|                | Category                             | 1-2                               | 1    | 2    | 1-2               |
| 14             |                                      | <b>BUILDINGS &amp; STRUCTURES</b> |      |      |                   |
| 14.2           | Boiler Building                      | BEC (Minus Acts. 13 and 14)       | 0.   | 00   | 883,600-1,622,000 |
| 14.3           | Steam Turbine Building               | BEC (Minus Acts. 13 and 14)       | 0.   | 00   | 883,600–1,622,000 |
| 14.4           | Administration Building              | Steam Turbine Gross Power, MW     | 0.00 |      | 685–776           |
| 14.5           | Circulation Water Pumphouse          | Circulating Water Flow Rate, gpm  | 0.60 | 0.59 | 255,000–498,000   |
| 14.6           | Water Treatment Buildings            | Raw Water Withdrawal, gpm         | 0.   | 50   | 6,000–10,700      |
| 14.7           | Machine Shop                         | Steam Turbine Gross Power, MW     | 0.   | 00   | 685–776           |
| 14.8           | Warehouse                            | Steam Turbine Gross Power, MW     | 0.   | 00   | 685–776           |
| 14.9           | Other Buildings & Structures         | Steam Turbine Gross Power, MW     | 0.00 |      | 685–776           |
| 14.10          | Waste Treating Building & Structures | Raw Water Withdrawal, gpm         | 0.   | 05   | 6,000–10,700      |

### **3.2 IGCC**

Exhibit 3-15 provides the category matrix for IGCC categories.

#### Exhibit 3-15. Category matrix: IGCC

| Category | Technologies                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------|
| 3        | Two-stage, slurry-feed, oxygen-blown gasifier with and without CO2 capture, Illinois No. 6 coal                      |
| 4        | Single-stage, slurry-feed, oxygen-blown gasifier with and without CO <sub>2</sub> capture, Illinois No. 6 coal       |
| 5        | Single-stage, dry-feed, oxygen-blown, up-flow gasifier with and without CO <sub>2</sub> capture, Illinois No. 6 coal |

Exhibit 3-16 through Exhibit 3-29 contain the scaling parameters and exponents that are suitable for IGCC plants at the given ranges.

Exhibit 3-16. Scaling parameters and exponents for categories 3-5: "Coal Handling"

| Account Number | Item Description                    | Parameter             | Exponent |      | nt | Range           |  |
|----------------|-------------------------------------|-----------------------|----------|------|----|-----------------|--|
|                | Category                            | 3-5                   | 3 4 5    |      | 5  | 3-5             |  |
| 1              |                                     | COAL HANDLING         |          |      |    |                 |  |
| 1.1            | Coal Receive & Unload               | Coal Feed Rate, lb/hr |          | 0.62 |    | 435,000–483,000 |  |
| 1.2            | Coal Stackout & Reclaim             | Coal Feed Rate, lb/hr |          | 0.62 |    | 435,000–483,000 |  |
| 1.3            | Coal Conveyors & Yard Crush         | Coal Feed Rate, lb/hr |          | 0.62 |    | 435,000–483,000 |  |
| 1.4            | Other Coal Handling                 | Coal Feed Rate, lb/hr |          | 0.62 |    | 435,000–483,000 |  |
| 1.9            | Coal & Sorbent Handling Foundations | Coal Feed Rate, lb/hr | 0.62     |      |    | 435,000–483,000 |  |

#### Exhibit 3-17. Scaling parameters and exponents for categories 3-5: "Coal Preparation and Feed"

| Account Number            | Item Description                                           | Parameter             | Exponent |      | nt   | Range           |      |                 |  |                 |
|---------------------------|------------------------------------------------------------|-----------------------|----------|------|------|-----------------|------|-----------------|--|-----------------|
|                           | Category                                                   | 3-5                   | 3 4 5    |      | 5    | 3-5             |      |                 |  |                 |
| 2 COAL PREPARATION & FEED |                                                            |                       |          |      |      |                 |      |                 |  |                 |
| 2.1                       | Coal Crushing & Drying                                     | Coal Feed Rate, lb/hr | 0.66     |      | 0.66 |                 | 0.66 |                 |  | 435,000–483,000 |
| 2.2                       | Prepared Coal Storage & Feed                               | Coal Feed Rate, lb/hr | 0.66     |      | 0.66 |                 |      | 435,000–483,000 |  |                 |
| 2.3                       | Dry Coal Injection System/<br>Slurry Coal Injection System | Coal Feed Rate, lb/hr | 0.66     |      |      | 435,000–483,000 |      |                 |  |                 |
| 2.4                       | Miscellaneous Coal Prep & Feed                             | Coal Feed Rate, lb/hr | 0.66     |      |      | 435,000–483,000 |      |                 |  |                 |
| 2.9                       | Coal & Sorbent Feed Foundation                             | Coal Feed Rate, lb/hr |          | 0.66 |      | 435,000–483,000 |      |                 |  |                 |

National Energy Technology Laboratory

| Account Number | Item Description                                 | Parameter                               | Expone | nt | Range             |
|----------------|--------------------------------------------------|-----------------------------------------|--------|----|-------------------|
|                | Category                                         | 3-5                                     | 3 4    | 5  | 3-5               |
| 3              | FEED\                                            | NATER & MISCELLANEOUS BOP SYSTEMS       |        |    |                   |
| 3.1            | Feedwater System                                 | Feedwater Flow (HP only), lb/hr         | 0.71   |    | 839,700–1,597,000 |
| 3.2            | Water Makeup & Pretreating                       | Raw Water Withdrawal, gpm               | 0.71   |    | 4,100–6,300       |
| 3.3            | Other Feedwater Subsystems                       | Feedwater Flow (HP only), lb/hr         | 0.71   |    | 839,700–1,597,000 |
| 3.4            | Service Water Systems                            | Raw Water Withdrawal, gpm               | 0.71   |    | 4,100–6,300       |
| 3.5            | Other Boiler Plant Systems                       | Feedwater Flow (HP only), lb/hr         | 0.73   |    | 839,700–1,597,000 |
| 3.6            | Natural Gas Pipeline and Start-Up System         | Coal Feed Rate, lb/hr                   | 0.24   |    | 435,000–483,000   |
| 3.7            | Waste Water Treatment Equipment                  | Process Water Discharge, gpm            | 0.71   |    | 900–1,220         |
| 3.8            | Vacuum Flash, Brine Concentrator, & Crystallizer | Syngas Scrubber Blowdown Flow Rate, gpm |        |    | 275–635           |
| 3.9            | Miscellaneous Plant Equipment                    | Coal Feed Rate, lb/hr                   | 0.24   |    | 435,000–483,000   |

#### Exhibit 3-18. Scaling parameters and exponents for categories 3-5: "Feedwater and Miscellaneous BOP Systems"

| Account Number | Item Description                        | Parameter                       | Ехро | onent [Coeffici          | Range           |                       |  |
|----------------|-----------------------------------------|---------------------------------|------|--------------------------|-----------------|-----------------------|--|
|                | Category                                | 3-5                             | 3    | <b>4</b> <sup>A</sup>    | 5               | 3-5                   |  |
| 4              | 4 GASIFIER, ASU, & ACCESSORIES          |                                 |      |                          |                 |                       |  |
|                |                                         |                                 |      | 0.70 <sup>B</sup>        |                 | 435,000–483,000       |  |
| 4.1            | Gasifier & Auxiliaries                  | Coal Feed Rate, lb/hr           | 0.19 | {0.00} <sup>c</sup>      | 1.42            | {464,700-482,900}     |  |
|                |                                         |                                 |      | See Note <sup>D</sup>    |                 | See Note <sup>c</sup> |  |
| 4.2            | Syngas Cooler                           | Syngas Cooler Duty, MMBtu/hr    | 0.33 | N/A                      | 0.33            | 110-200               |  |
| 4.2            | Air Constant Unit (Ovident Compression  | O <sub>2</sub> Production, TPD/ |      | 0.70/0.70                |                 | 4,000–4,800           |  |
| 4.3            | Air Separation Unit/Oxidant Compression | Main Air Compressor Power, kW   |      | [0.50/0.50] <sup>E</sup> |                 | 61,000–71,400         |  |
| 4.5            | Miscellaneous Gasification Equipment    | Coal Feed Rate, lb/hr           |      | 0.50                     |                 | 435,000–483,000       |  |
| 4.6            | LT Heat Recovery & Flue Gas Saturation  | Coal Feed Rate, lb/hr           |      | See Note <sup>F</sup>    |                 | 435,000–483,000       |  |
| 4.7            | Flare Stack System                      | Coal Feed Rate, lb/hr           | 0.50 |                          | 0.50            |                       |  |
| 4.8            | Black Water & Sour Gas Section          | Coal Feed Rate, lb/hr           | N/A  | See Note <sup>G</sup>    | N/A             | 435,000–483,000       |  |
| 4.15           | Major Component Rigging                 | Coal Feed Rate, lb/hr           |      | 0.50                     | 435,000–483,000 |                       |  |
| 4.16           | Gasification Foundations                | Coal Feed Rate, lb/hr           |      | 0.50                     |                 | 435,000–483,000       |  |

Exhibit 3-19. Scaling parameters and exponents for categories 3-5: "Gasifier, ASU, and Accessories"

$$SC = C_1 * RC * \left(\frac{SP_1}{RP_1}\right)^{Exp_1} + C_2 * RC * \left(\frac{SP_2}{RP_2}\right)^{Exp_2}$$

Equation 6

<sup>A</sup>The GE Quench-Only case is not subject to category 4 scaling guidance. Only a single data point for GE Quench-Only is available; thus, no scaling guidance has been developed.

<sup>B</sup>For cases that do not fall into the categories of change in number of trains or small changes within a set gasifier feed rate, scale on Coal Feed Rate (lb/hr) with exponent of 0.70.

<sup>c</sup>Gasifier designs are marketed for a set inlet coal feed rate. It's unclear if gasifier vendors would customize gasifier sizes for individual inlet coal feed rates, or if there would be cost impacts of customization of size. Therefore, for small changes in inlet coal feed rate (18,200 lb/hr [220 tpd]), the gasifier cost should remain unchanged from the reference case, and an exponent of 0.00 should be used.

<sup>D</sup>The category 4 cases consider two parallel gasifier trains. If the change in Coal Feed Rate is significant enough to add or remove a full gasifier train (e.g., +/- 50% in Coal Feed Rate), the Account 4.1 reference case capital cost should be adjusted by multiplying by 1.5 (add one gasifier train), 0.5 (remove one gasifier train), or the appropriate factor reflecting the change in number of gasifier trains.

<sup>E</sup>Use Equation 6.

<sup>F</sup>The ratio of Account 4.6 divided by Account 4.1 should be maintained from the reference case.

<sup>G</sup>Account 4.8 costs are included in Account 4.1; thus, no scaling guidance is provided.

| Account Number | Item Description                                      | Parameter                                                            | Exponent |         | it           | Range                 |
|----------------|-------------------------------------------------------|----------------------------------------------------------------------|----------|---------|--------------|-----------------------|
|                | Category                                              | 3-5                                                                  | 3        | 4       | 5            | 3-5                   |
| 5              |                                                       | SYNGAS CLEANUP                                                       |          |         |              |                       |
| 5.1            | Double Stage Selexol                                  | Gas Flow to AGR, acfm                                                | 0.79     |         | 6,500–14,000 |                       |
| 5.2            | Sulfur Removal (Sulfinol, MDEA, Single Stage Selexol) | Gas Flow to AGR, acfm                                                | S        | ee Note | A            | See Note <sup>A</sup> |
| 5.3            | Elemental Sulfur Plant                                | Sulfur Production, lb/hr                                             |          | 0.67    |              | 10,800–12,100         |
| 5.4            | Carbon Dioxide Compression & Drying                   | Compressor Auxiliary Load, kW <sup>B</sup>                           | 0.88     |         |              | 17,000–46,700         |
| 5.5            | Carbon Dioxide Aftercooler                            | Heat Exchanger Duty, MMBtu/hr                                        | 0.83     |         |              | 32–88                 |
| 5.6            | Mercury Removal (Carbon Bed)                          | Sulfur-Impregnated Activated Carbon<br>Initial Fill, ft <sup>3</sup> | 1.64     |         |              | 3,400–7,600           |
| 5.7            | Shift Reactors                                        | WGS Catalyst Initial Fill, ft <sup>3</sup>                           |          | 0.80    |              | 9,800–25,800          |
| 5.8            | COS Hydrolysis                                        | COS Hydrolysis Catalyst Volume, ft <sup>3</sup>                      |          | 0.80    |              | 1,300–2,200           |
| 5.9            | Particulate Removal                                   | Candle Filter Flow Rate, acfm                                        | 0.79     | N/A     | 0.79         | 19,200–29,300         |
| 5.10           | Blowback Gas Systems                                  | Candle Filter Flow Rate, acfm                                        | 0.30     |         |              | 13,700–29,300         |
| 5.11           | Fuel Gas Piping                                       | Syngas Flow Rate, lb/hr                                              | 0.72     |         |              | 182,300-870,300       |
| 5.12           | Gas Cleanup Foundations                               | Sulfur Production, lb/hr                                             |          | 0.79    |              | 10,800–12,100         |

| Exhibit 3-20. Scaling parameters and   | d exponents for cateaorie | s 3-5: "Svnaas Cleanup" |
|----------------------------------------|---------------------------|-------------------------|
| Exindit de 201 de dining parameters an | a chponents jor categorie | 5 5 5. Syngus cicunup   |

<sup>A</sup> Only one data point is available for each of the Sulfur Removal Systems (Sulfinol, MDEA, Single Stage Selexol); therefore, no scaling guidance has been developed. It is recommended that these cases be scaled on Gas Flow to AGR (acfm) with an exponent of 0.70.

<sup>B</sup> Compressor Auxiliary Load scaling parameter is valid only for the same suction and discharge pressures assumed in process modeling, as well as the same compressor configuration compatible with a Double Stage Selexol System.

| Account Number | Item Description                   | Parameter               | Exponent          |      | t   | Range           |
|----------------|------------------------------------|-------------------------|-------------------|------|-----|-----------------|
|                | Category                           | 3-5                     | 3                 | 4    | 5   | 3-5             |
| 6              | 6 COMBUSTION TURBINE & ACCESSORIES |                         |                   |      |     |                 |
| 6.1            | Combustion Turbine Generator       | Syngas Flow Rate, lb/hr | 0.00 <sup>A</sup> |      |     | 182,300-870,300 |
| 6.2            | Syngas Expander                    | Syngas Flow Rate, lb/hr | N/A               | 0.88 | N/A | 182,300-870,300 |
| 6.3            | Combustion Turbine Accessories     | Syngas Flow Rate, lb/hr |                   | 0.00 |     | 182,300-870,300 |
| 6.4            | Compressed Air Piping              | Syngas Flow Rate, lb/hr |                   | 0.00 |     | 182,300-870,300 |
| 6.5            | Combustion Turbine Foundations     | Syngas Flow Rate, lb/hr |                   | 0.00 |     | 182,300-870,300 |

<sup>A</sup>Combustion Turbine Generator costs are slightly different depending on whether the case includes CO<sub>2</sub> capture, or is non-capture. When scaling this account, only scale capture to capture cases, or non-capture to non-capture cases; do not scale capture to non-capture cases, or vice versa.

| Exhibit 3-22. Scaling parameters and ex | xponents for categorie | es 3-5: "HRSG, Ductwork | , and Stack" |
|-----------------------------------------|------------------------|-------------------------|--------------|
|                                         |                        |                         |              |

| Account Number           | Item Description                   | Parameter               | Exponent |                | t    | Range               |
|--------------------------|------------------------------------|-------------------------|----------|----------------|------|---------------------|
|                          | Category                           | 3-5                     | 3 4 5    |                | 5    | 3-5                 |
| 7 HRSG, DUCTWORK & STACK |                                    |                         |          |                |      |                     |
| 7.1                      | Heat Recovery Steam Generator      | HRSG Duty, MMBtu/hr     | 0.70     |                |      | 1,770–1,930         |
| 7.2                      | HRSG Accessories                   | HRSG Duty, MMBtu/hr     | 0.70     |                |      | 1,770–1,930         |
| 7.3                      | Ductwork                           | Gas Flow to Stack, acfm | 0.64     | 0.64 0.70 0.70 |      | 2,611,000–2,705,000 |
| 7.4                      | Stack                              | Gas Flow to Stack, acfm | 0.70     |                |      | 2,611,000-2,705,000 |
| 7.5                      | HRSG, Ductwork & Stack Foundations | Gas Flow to Stack, acfm | 0.70     | 0.70           | 0.73 | 2,611,000-2,705,000 |

| Account Number Item Description |                                       | Parameter                       | Exponent |                  | nt | Range             |
|---------------------------------|---------------------------------------|---------------------------------|----------|------------------|----|-------------------|
| Category                        |                                       | 3-5                             | 3        | 4                | 5  | 3-5               |
| 8                               | STEAM TURBINE & ACCESSORIES           |                                 |          |                  |    |                   |
| 8.1                             | Steam Turbine Generator & Accessories | Steam Turbine Gross Power, kW   |          | 0.70             |    | 217,400–301,200   |
| 8.2                             | Steam Turbine Plant Auxiliaries       | Steam Turbine Gross Power, kW   |          | 0.71             |    | 217,400–301,200   |
| 8.3a                            | Condenser & Auxiliaries               | Condenser Duty, MMBtu/hr        |          | 0.71             |    | 1,275–1,570       |
| 8.3b                            | Air Cooled Condenser                  | Condenser Duty, MMBtu/hr        |          | N/A <sup>A</sup> |    | N/A               |
| 8.4                             | Steam Piping                          | Feedwater Flow (HP only), lb/hr |          | 0.72             |    | 839,700–1,597,000 |
| 8.5                             | Turbine Generator Foundations         | Steam Turbine Gross Power, kW   |          | 0.72             |    | 217,400–301,200   |

Exhibit 3-23. Scaling parameters and exponents for categories 3-5: "Steam Turbine & Accessories"

<sup>A</sup>Cases from Revision 4 exclusively use wet cooling. Future cases that may use air cooling should insert the Air-Cooled Condenser account here. Guidance on scaling has not yet been developed.

Exhibit 3-24. Scaling parameters and exponents for categories 3-5: "Cooling Water System"

| Account Number | Item Description                     | Parameter                        | Exponent |      | Range           |
|----------------|--------------------------------------|----------------------------------|----------|------|-----------------|
| Category       |                                      | 3-5                              | 3 4      | 5    | 3-5             |
| 9              |                                      |                                  |          |      |                 |
| 9.1            | Cooling Towers                       | Cooling Tower Duty, MMBtu/hr     | 0.72     |      | 1,920–2,540     |
| 9.2            | Circulating Water Pumps              | Circulating Water Flow Rate, gpm | 0.72     |      | 192,000–253,700 |
| 9.3            | Circulating Water System Auxiliaries | Circulating Water Flow Rate, gpm | 0.64     | 0.67 | 192,000–253,700 |
| 9.4            | Circulating Water Piping             | Circulating Water Flow Rate, gpm | 0.61     |      | 192,000–253,700 |
| 9.5            | Make-up Water System                 | Raw Water Withdrawal, gpm        | 0.63     |      | 4,100–6,300     |
| 9.6            | Component Cooling Water System       | Circulating Water Flow Rate, gpm | 0.64     |      | 192,000–253,700 |
| 9.7            | Circulating Water System Foundations | Circulating Water Flow Rate, gpm | 0.5      | 9    | 192,000–253,700 |

| Account Number | Item Description                     | Parameter                   | Exponent |               | nt | Range         |  |
|----------------|--------------------------------------|-----------------------------|----------|---------------|----|---------------|--|
| Category       |                                      | 3-5                         | 3        | 4             | 5  | 3-5           |  |
| 10             | 10 SLAG RECOVERY & HANDLING          |                             |          |               |    |               |  |
| 10.1           | Slag Dewatering & Cooling            | Slag Production, lb/hr      | 0.64     |               |    | 43,600–53,000 |  |
| 10.2           | Gasifier Ash Depressurization        | Slag Production, lb/hr      | 0.64     |               |    | 43,600–53,000 |  |
| 10.3           | Cleanup Ash Depressurization         | Slag Production, lb/hr      | 0.64     |               |    | 43,600–53,000 |  |
| 10.6           | Ash Storage Silos                    | Slag Production, lb/hr      | 0.55     |               |    | 43,600–53,000 |  |
| 10.7           | Ash Transport & Feed Equipment       | Slag Production, lb/hr      | ır 0.55  |               |    | 43,600–53,000 |  |
| 10.8           | Miscellaneous Ash Handling Equipment | Slag Production, lb/hr 0.55 |          | 43,600–53,000 |    |               |  |
| 10.9           | Ash/Spent Sorbent Foundation         | Slag Production, lb/hr      |          | 0.55          |    | 43,600–53,000 |  |

Exhibit 3-25. Scaling parameters and exponents for categories 3-5: "Slag Recovery & Handling"

Exhibit 3-26. Scaling parameters and exponents for categories 3-5: "Accessory Electric Plant"

| Account Number | Item Description Parameter |                               | Exponent | Range           |
|----------------|----------------------------|-------------------------------|----------|-----------------|
|                | Category                   | 3-5                           | 3 4 5    | 3-5             |
| 11             |                            | ACCESSORY ELECTRIC PLANT      |          |                 |
| 11.1           | Generator Equipment        | Steam Turbine Gross Power, kW | 0.54     | 217,400–301,200 |
| 11.2           | Station Service Equipment  | Auxiliary Load, kW            | 0.45     | 122,400–185,600 |
| 11.3           | Switchgear & Motor Control | Auxiliary Load, kW            | 0.45     | 122,400–185,600 |
| 11.4           | Conduit & Cable Tray       | Auxiliary Load, kW            | 0.45     | 122,400–185,600 |
| 11.5           | Wire & Cable               | Auxiliary Load, kW            | 0.45     | 122,400–185,600 |
| 11.6           | Protective Equipment       | Auxiliary Load, kW            | 0.00     | 122,400–185,600 |
| 11.7           | Standby Equipment          | Total Plant Gross Power, kW   | 0.48     | 684,700–765,200 |
| 11.8           | Main Power Transformers    | Total Plant Gross Power, kW   | 0.71     | 684,700–765,200 |
| 11.9           | Electrical Foundations     | Total Plant Gross Power, kW   | 0.70     | 684,700–765,200 |

| Account Number | Item Description                        | Parameter          | Exponent | Range           |
|----------------|-----------------------------------------|--------------------|----------|-----------------|
| Category       |                                         | 3-5                | 3 4 5    | 3-5             |
| 12             | INSTRUME                                | ENTATION & CONTROI | L        |                 |
| 12.1           | IGCC Control Equipment                  | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.2           | Combustion Turbine Control Equipment    | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.3           | Steam Turbine Control Equipment         | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.4           | Other Major Component Control Equipment | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.5           | Signal Processing Equipment             | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.6           | Control Boards, Panels & Racks          | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.7           | Distributed Control System Equipment    | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.8           | Instrument Wiring & Tubing              | Auxiliary load, kW | 0.13     | 122,400–185,600 |
| 12.9           | Other I&C Equipment                     | Auxiliary load, kW | 0.13     | 122,400–185,600 |

#### Exhibit 3-28. Scaling parameters and exponents for categories 3-5: "Improvements to Site"

| Account Number | Item Description  | Parameter                   | Exponent |      | nt | Range               |
|----------------|-------------------|-----------------------------|----------|------|----|---------------------|
| Cat            | egory             | 3-5                         | 3        | 4    | 5  | 3-5                 |
| 13             |                   | IMPROVEMENTS TO SITE        |          |      |    |                     |
| 13.1           | Site Preparation  | BEC (Minus Acts. 13 and 14) | (        | 0.08 |    | 1,494,000–2,188,000 |
| 13.2           | Site Improvements | BEC (Minus Acts. 13 and 14) | (        | 0.08 |    | 1,494,000–2,188,000 |
| 13.3           | Site Facilities   | BEC (Minus Acts. 13 and 14) | (        | 0.08 |    | 1,494,000–2,188,000 |

| Account Number | Item Description                     | Parameter                          | Exponent |   | Range           |
|----------------|--------------------------------------|------------------------------------|----------|---|-----------------|
|                | Category                             | 3-5                                | 3 4      | 5 | 3-5             |
| 14             |                                      | BUILDINGS & STRUCTURES             |          |   |                 |
| 14.1           | Combustion Turbine Area              | Combustion Turbine Gross Power, kW | 0.00     |   | 348,000–580,000 |
| 14.3           | Steam Turbine Building               | Steam Turbine Gross Power, kW      | 0.06     |   | 217,400–301,200 |
| 14.4           | Administration Building              | Steam Turbine Gross Power, kW      | 0.04     |   | 217,400–301,200 |
| 14.5           | Circulation Water Pumphouse          | Circulating Water Flow Rate, gpm   | 0.46     |   | 192,000–253,700 |
| 14.6           | Water Treatment Buildings            | Raw Water Withdrawal, gpm          | 0.71     |   | 4,100–6,300     |
| 14.7           | Machine Shop                         | Steam Turbine Gross Power, kW      | 0.02     |   | 217,400–301,200 |
| 14.8           | Warehouse                            | Steam Turbine Gross Power, kW      | 0.02     |   | 217,400–301,200 |
| 14.9           | Other Buildings & Structures         | Steam Turbine Gross Power, kW      | 0.02     |   | 217,400–301,200 |
| 14.10          | Waste Treating Building & Structures | Raw Water Withdrawal, gpm          | 0.09     |   | 4,100–6,300     |

### **3.3 NGCC**

Exhibit 3-30 provides the category matrix for NGCC categories.

#### Exhibit 3-30. Category matrix: NGCC

| Category | Technologies                                                   |
|----------|----------------------------------------------------------------|
| 6        | Natural gas, air-fired, with and without $\text{CO}_2$ capture |

Exhibit 3-31 through Exhibit 3-40 contain the scaling parameters and exponents that are suitable for NGCC plants at the given ranges.

Exhibit 3-31. Scaling parameters and exponents for categories 6: "Feedwater and Miscellaneous BOP Systems"

| Account<br>Number | Item Description                             | Parameter                          | Exponent          | Range                 |
|-------------------|----------------------------------------------|------------------------------------|-------------------|-----------------------|
|                   | Category                                     | 6                                  | 6                 | 6                     |
| 3                 | FEEDWA                                       | TER & MISCELLANEOUS BOP SY         | STEMS             |                       |
| 3.1               | Feedwater System                             | Feedwater Flow (HP only),<br>lb/hr | 0.72              | 803,200–<br>1,339,000 |
| 3.2               | Water Makeup & Pretreating                   | Raw Water Withdrawal, gpm          | 0.73              | 2,900–4,700           |
| 3.3               | Other Feedwater Subsystems                   | Feedwater Flow (HP only),<br>lb/hr | 0.72              | 803,200–<br>1,339,000 |
| 3.4               | Service Water Systems                        | Raw Water Withdrawal, gpm          | 0.73              | 2,900–4,700           |
| 3.5               | Other Boiler Plant Systems                   | Raw Water Withdrawal, gpm          | 0.00              | N/A <sup>A</sup>      |
| 3.6               | Natural Gas Pipeline and Start-<br>Up System | Fuel Gas Flow, acfm average        | 0.00 <sup>B</sup> | N/A <sup>B</sup>      |
| 3.7               | Waste Water Treatment<br>Equipment           | Process Water Discharge, gpm       | 0.71              | 650–1,670             |
| 3.9               | Miscellaneous Plant Equipment                | Fuel Gas Flow, acfm average        | 0.00              | N/AB                  |

<sup>A</sup>Combustion turbines are manufactured in discrete sizes. As such, certain cost accounts become fixed costs for a given combustion turbine size. For example, the Acct. 3.6 Natural Gas Pipeline cost will be identical for a common combustion turbine output, and, therefore, common natural gas feed flow rate. Thus, no scaling range is provided.

<sup>B</sup>As noted in the item description, this line item also includes the natural gas pipeline. The natural gas pipeline is an additive cost and would not be scaled. The pipeline cost is specific to the plant location and needs. Scaling over larger ranges will result in unrealistic costs since this has the effect of essentially increasing and decreasing the pipe length. If alternate fuel gas flow rates are required, a more detailed build-up of the natural gas pipeline cost is recommended.

| Account Number      | Item Description Parameter             |                                                                  | Exponent          | Range                                   |
|---------------------|----------------------------------------|------------------------------------------------------------------|-------------------|-----------------------------------------|
| Category            |                                        | 6                                                                | 6                 | 6                                       |
| 5B FLUE GAS CLEANUP |                                        |                                                                  |                   |                                         |
| 5.1                 | Cansolv CO <sub>2</sub> Removal System | CO <sub>2</sub> Product Flow Rate, lb/hr/Inlet to Absorber, acfm | 0.60 <sup>A</sup> | 370,000–617,000/<br>1,915,000–3,192,000 |
| 5.4                 | CO <sub>2</sub> Compression & Drying   | Compressor Auxiliary Load, kW <sup>B</sup>                       | 0.41              | 17,000–46,700                           |
| 5.5                 | CO <sub>2</sub> Compressor Aftercooler | Heat Exchanger Duty, MMBtu/hr                                    | 0.83              | 32–88                                   |
| 5.12                | Gas Cleanup Foundations                | CO <sub>2</sub> Flow Rate, lb/hr                                 | 0.79              | 370,000–617,000                         |

#### Exhibit 3-32. Scaling parameters and exponents for categories 6: "Flue Gas Cleanup"

<sup>A</sup>To scale the Cansolv CO<sub>2</sub> Removal System, 40% of the cost is scaled using the parameter Inlet to Absorber, (acfm); the remaining 60% is scaled using the parameter CO<sub>2</sub> Product Flow Rate (lb/hr).

<sup>B</sup>Compressor Auxiliary Load scaling parameter is valid only for the same suction (28.9 psia) and discharge (2,214.7 psia) pressures assumed in process modeling.

#### Exhibit 3-33. Scaling parameters and exponents for categories 6: "Combustion Turbine and Accessories"

| Account Number | umber Item Description Parameter |                                           | Exponent | Range |
|----------------|----------------------------------|-------------------------------------------|----------|-------|
| Category       |                                  | 6                                         | 6        | 6     |
| 6              | СОМВ                             | USTION TURBINE & ACCESSORIES <sup>A</sup> |          |       |
| 6.1            | Combustion Turbine Generator     | Fuel Gas Flow, acfm                       | 0.00     | N/A   |
| 6.3            | Combustion Turbine Accessories   | Fuel Gas Flow, acfm                       | 0.00     | N/A   |
| 6.4            | Compressed Air Piping            | Fuel Gas Flow, acfm                       | 0.00     | N/A   |
| 6.5            | Combustion Turbine Foundations   | Combustion Turbine Gross Power, kW        | 0.00     | N/A   |

<sup>A</sup>Combustion turbines are manufactured in discrete sizes. As such, certain cost accounts become fixed costs for a given combustion turbine size. Thus, no scaling range is provided, and all exponents are shown as 0.00.

| Account Number | Item Description                     | Parameter                   | Exponent          | Range               |
|----------------|--------------------------------------|-----------------------------|-------------------|---------------------|
| Category       |                                      | 6                           | 6                 | 6                   |
| 7              |                                      | HRSG, DUCTWORK, & STACK     |                   |                     |
| 7.1            | Heat Recovery Steam Generator        | HRSG Duty, MMBtu/hr         | 0.70              | 1,950–2,300         |
| 7.2            | HRSG Accessories                     | HRSG Duty, MMBtu/hr         | 1.40              | 1,950–2,300         |
| 7.3            | Ductwork                             | Gas Flow to Stack, acfm     | 0.70              | 1,833,000-2,365,000 |
| 7.4            | Stack                                | Gas Flow to Stack, acfm     | 0.70              | 1,833,000-2,365,000 |
| 7.5            | HRSG Ductwork & Stack Foundations    | Gas Flow to Stack, acfm     | 0.70              | 1,833,000-2,365,000 |
| 7.6            | Selective Catalytic Reduction System | Flue Gas Flow to HRSG, acfm | 0.00 <sup>A</sup> | N/A                 |

Exhibit 3-34. Scaling parameters and exponents for categories 6: "HRSG, Ductwork, and Stack"

<sup>A</sup>Combustion turbines are manufactured in discrete sizes. As such, certain cost accounts become fixed costs for a given combustion turbine size. In the case of SCR, flue gas flow rate is identical between NGCC with and without  $CO_2$  capture cases; in the case of Steam Piping, HP steam flow rate is identical between the two NGCC cases; thus, no scaling range is provided, and the exponent is 0.00.

Exhibit 3-35. Scaling parameters and exponents for categories 6: "Steam Turbine and Accessories"

| Account Number | Item Description                      | Parameter                       | Exponent          | Range             |
|----------------|---------------------------------------|---------------------------------|-------------------|-------------------|
| Category       |                                       | 6                               | 6                 | 6                 |
| 8              | S                                     | TEAM TURBINE & ACCESSORIES      |                   |                   |
| 8.1            | Steam Turbine Generator & Accessories | Steam Turbine Gross Power, kW   | 0.80              | 212,500–263,000   |
| 8.2            | Steam Turbine Plant Auxiliaries       | Steam Turbine Gross Power, kW   | 0.73              | 212,500–263,000   |
| 8.3            | Condenser & Auxiliaries               | Condenser Duty, MMBtu/hr        | 0.80              | 788–1,340         |
| 8.4            | Steam Piping                          | Feedwater Flow (HP only), lb/hr | 0.00 <sup>A</sup> | 803,200–1,339,000 |
| 8.5            | Turbine Generator Foundations         | Steam Turbine Gross Power, kW   | 0.73              | 212,500–263,000   |

<sup>A</sup>Combustion turbines are manufactured in discrete sizes. As such, certain cost accounts become fixed costs for a given combustion turbine size. In the case of SCR, flue gas flow rate is identical between NGCC with and without  $CO_2$  capture cases; in the case of Steam Piping, HP steam flow rate is identical between the two NGCC cases; thus, no scaling range is provided, and the exponent is 0.00.

| Account Number | Item Description               | Parameter                        | Exponent | Range           |
|----------------|--------------------------------|----------------------------------|----------|-----------------|
| Category       |                                | 6                                | 6        | 6               |
| 9              | COOLING WATER SYSTEM           |                                  |          |                 |
| 9.1            | Cooling Towers                 | Cooling Tower Duty, MMBtu/hr     | 0.73     | 1,300–2,200     |
| 9.2            | Circulating Water Pumps        | Circulating Water Flow Rate, gpm | 0.72     | 135,700–220,800 |
| 9.3            | Circ. Water System Auxiliaries | Circulating Water Flow Rate, gpm | 0.49     | 135,700–220,800 |
| 9.4            | Circ. Water Piping             | Circulating Water Flow Rate, gpm | 0.60     | 135,700–220,800 |
| 9.5            | Make-up Water System           | Raw Water Withdrawal, gpm        | 0.40     | 2,900–4,700     |
| 9.6            | Component Cooling Water System | Circulating Water Flow Rate, gpm | 0.60     | 135,700–220,800 |
| 9.7            | Circ. Water System Foundations | Circulating Water Flow Rate, gpm | 0.60     | 135,700–220,800 |

| Exhibit 3-36. Scaling parameters and exponents for categories 6: "Cooling Water System" |
|-----------------------------------------------------------------------------------------|
| Exhibit o our standy parameters and exponents for categories of cooling water system    |

#### Exhibit 3-37. Scaling parameters and exponents for categories 6: "Accessory Electric Plant"

| Account Number | Item Description           | Parameter                            | Exponent | Range           |
|----------------|----------------------------|--------------------------------------|----------|-----------------|
|                | Category                   | 6                                    | 6        | 6               |
| 11             |                            | ACCESSORY ELECTRIC PLANT             |          |                 |
| 11.1           | Generator Equipment        | Total Plant Gross Power, kW          | 0.59     | 689,800–740,100 |
| 11.2           | Station Service Equipment  | Auxiliary Load, kW                   | 0.64     | 13,500–44,000   |
| 11.3           | Switchgear & Motor Control | Auxiliary Load, kW                   | 0.64     | 13,500–44,000   |
| 11.4           | Conduit & Cable Tray       | Auxiliary Load, kW                   | 0.64     | 13,500–44,000   |
| 11.5           | Wire & Cable               | Auxiliary Load, kW                   | 0.64     | 13,500–44,000   |
| 11.6           | Protective Equipment       | Auxiliary Load, kW                   | 1.10     | 13,500–44,000   |
| 11.7           | Standby Equipment          | Total Plant Gross Power, kW          | 0.48     | 689,800–740,100 |
| 11.8           | Main Power Transformers    | STG output, MVA PLUS CTG output, MVA | 1.36     | 520–580         |
| 11.9           | Electrical Foundations     | Total Plant Gross Power, kW          | 0.70     | 689,800–740,100 |

| Account Number | Item Description                        | Parameter          | Exponent | Range         |
|----------------|-----------------------------------------|--------------------|----------|---------------|
|                | Category                                | 6                  | 6        | 6             |
| 12             | INSTRUMEN                               | TATION & CONTROL   |          |               |
| 12.1           | NGCC Control Equipment                  | Auxiliary Load, kW | 0.13     | 13,500–44,000 |
| 12.2           | Combustion Turbine Control Equipment    | Auxiliary Load, kW | 0.00     | 13,500–44,000 |
| 12.3           | Steam Turbine Control Equipment         | Auxiliary Load, kW | 0.13     | 13,500–44,000 |
| 12.4           | Other Major Component Control Equipment | Auxiliary Load, kW | 0.16     | 13,500–44,000 |
| 12.5           | Signal Processing Equipment             | Auxiliary Load, kW | 0.13     | 13,500–44,000 |
| 12.6           | Control Boards, Panels & Racks          | Auxiliary Load, kW | 0.16     | 13,500–44,000 |
| 12.7           | Distributed Control System Equipment    | Auxiliary Load, kW | 0.16     | 13,500–44,000 |
| 12.8           | Instrument Wiring & Tubing              | Auxiliary Load, kW | 0.16     | 13,500–44,000 |
| 12.9           | Other I&C Equipment                     | Auxiliary Load, kW | 0.16     | 13,500–44,000 |

|  | Exhibit 3-38. Scaling parameters and ex | ponents for categories 6: | "Instrumentation and Control" |
|--|-----------------------------------------|---------------------------|-------------------------------|
|--|-----------------------------------------|---------------------------|-------------------------------|

#### Exhibit 3-39. Scaling parameters and exponents for categories 6: "Improvements to Site"

| Account Number | Item Description  | Parameter                   | Exponent | Range           |
|----------------|-------------------|-----------------------------|----------|-----------------|
| Cat            | egory             | 6                           | 6        | 6               |
| 13             |                   | IMPROVEMENTS TO SIT         | Έ        |                 |
| 13.1           | Site Preparation  | Total Plant Gross Power, kW | 0.46     | 689,800–740,100 |
| 13.2           | Site Improvements | Total Plant Gross Power, kW | 0.46     | 689,800–740,100 |
| 13.3           | Site Facilities   | Total Plant Gross Power, kW | 0.46     | 689,800–740,100 |

| Account Number | Item Description                     | Parameter                        | Exponent          | Range           |
|----------------|--------------------------------------|----------------------------------|-------------------|-----------------|
|                | Category 6                           |                                  | 6                 | 6               |
| 14             |                                      | BUILDINGS & STRUCTURES           |                   |                 |
| 14.1           | Combustion Turbine Area              | Gas Turbine Power, kW            | 0.00 <sup>A</sup> | N/A             |
| 14.3           | Steam Turbine Building               | Steam Turbine Gross Power, kW    | 0.60              | 212,500–263,000 |
| 14.4           | Administration Building              | Total Plant Gross Power, kW      | 0.35              | 689,800–740,100 |
| 14.5           | Circulation Water Pumphouse          | Circulating Water Flow Rate, gpm | 0.82              | 135,700–220,800 |
| 14.6           | Water Treatment Buildings            | Raw Water Withdrawal, gpm        | 0.66              | 2,900–4,700     |
| 14.7           | Machine Shop                         | Total Plant Gross Power, kW      | 0.36              | 689,800–740,100 |
| 14.8           | Warehouse                            | Total Plant Gross Power, kW      | 0.34              | 689,800–740,100 |
| 14.9           | Other Buildings & Structures         | Total Plant Gross Power, kW      | 0.25              | 689,800–740,100 |
| 14.10          | Waste Treating Building & Structures | Total Plant Gross Power, kW      | 0.34              | 689,800–740,100 |

<sup>A</sup>Combustion turbines are manufactured in discrete sizes. As such, certain cost accounts become fixed costs for a given combustion turbine size. Thus, no scaling range is provided, and the exponent is 0.00.

# 4 Revision Control

#### Exhibit 4-1. Revision table

| Revision Number                     | Revision Date    | Description of Change                                                                                                                                                                                                                                           | Comments |
|-------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1                                   | February 5, 2014 | Document formatted and edited.                                                                                                                                                                                                                                  |          |
| 2                                   | March 2, 2016    | Methodology validated for June 2011 data reported in revisions 2a and 2b of the Bituminous Baseline. Values edited where necessary.                                                                                                                             |          |
| 3 – Revision 3<br>Reports and Prior | April 9, 2016    | Parameters, exponents, and ranges were compared<br>against similar internal categories within this document,<br>and against the Aspen performance template results for<br>Revision 3 cases. Adjustments were made as necessary.<br>Document was also formatted. |          |
| 3 – Revision 4<br>Report            | October 3, 2019  | Incorporated Revision 4 updates.                                                                                                                                                                                                                                |          |

## **5** References

- [1] National Energy Technology Laboratory (NETL), "Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4," Pittsburgh, PA, 2019.
- [2] National Energy Technology Laboratory (NETL), "Quality Guidelines for Energy System Studies: Capital Cost Scaling Methodology: Revision 3 Reports and Prior," Pittsburgh, PA, 2019.
- [3] National Energy Technology Laboratory (NETL), "Cost and Performance Baseline for Fossil Energy Plants Volume 3a: Low Rank Coal to Electricity: IGCC Cases," Pittsburgh, PA, 2011.
- [4] National Energy Technology Laboratory (NETL), "Cost and Performance Baseline for Fossil Energy Plants Volume 1b: Bituminous Coal (IGCC) to Electricity Revision 2b -Year Dollar Update," PIttsburgh, PA, 2015.