
21 March 2017
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Cover Illustration: Figure illustrating how changes in the mineral kinetic constants impact prediction of shale porosity evolution over time.

An electronic version of this report can be found at:
http://netl.doe.gov/research/on-site-research/publications/featured-technical-reports
https://edx.netl.doe.gov/carbonstorage

Victor N. Balashov1, Susan L. Brantley1, George D. Guthrie2, Christina L. Lopano2, J. Alexandra Hakala2, J. Donald Rimstidt3

1 Earth and Environmental Systems Institute, 2217 EES Building, Pennsylvania State University, University Park, PA 16802

2 U.S. Department of Energy, National Energy and Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, PA 15236

3 Department of Geosciences, Derring Hall, RM4044, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061

NETL-TRS-5-2017

21 March 2017

NETL Contacts:
Christina Lopano, Principal Investigator
Angela Goodman, Technical Portfolio Lead
Cynthia Powell, Executive Director, Research & Innovation Center
This page intentionally left blank.
Table of Contents

EXECUTIVE SUMMARY ...1

1. **INTRODUCTION** ..2

2. **METHODS** ...4
 2.1 GEOPHYSICAL AND GEOCHEMICAL CONDITIONS ..4
 2.2 MINERALOGY, THERMODYNAMICS, AND KINETICS ..5
 2.3 REACTIVE TRANSPORT MODELING...11

3. **SIMULATION OF CO₂ INDUCED REACTIVE PROCESS IN BASELINE SANDSTONE** ...16
 3.1 SETUP OF THE REACTIVE DIFFUSION PROBLEM ..16
 3.2 MODELING RESULTS ASSUMING STANDARD KINETICS18
 3.3 EVOLUTION OF CO₂ SEQUESTRATION ...25
 3.4 KINETIC SENSITIVITY ANALYSIS ...26
 3.5 TIME SEQUENCES OF MINERAL REACTION: SENSITIVITY TO RATE CONSTANTS ..31
 3.6 MINERAL REACTION NETWORKS ...32

4. **SIMULATION OF REACTION AND DIFFUSION AT THE RESERVOIR (SANDSTONE)/CAPROCK (SHALE) INTERFACE DURING CO₂ STORAGE** ..34
 4.1 SETUP OF THE REACTIVE PROBLEM ...34
 4.2 RESULTS FOR STANDARD KINETICS AND STANDARD SHALE TRANSPORT PROPERTIES ..35
 4.3 REACTIVE ZONE IN SHALE ...43
 4.4 VARIATION OF THE TRANSPORT PROPERTIES OF THE SHALE POROUS MEDIUM ..48
 4.5 VARIATION IN MINERAL KINETICS ...55
 4.6 DISCUSSION ..65

5. **CONCLUSIONS** ..67

6. **REFERENCES** ..69
List of Figures

Figure 1: Schematic diagram of the one-dimensional reactive diffusion model. 16
Figure 2: A schematic diagram of relative depth showing geometry of a CO2 plume within a sandstone sandwiched between two shales. .. 17
Figure 3: The calculated concentrations of CO2,aq and pH plotted as a function of distance inside the sandstone layer at different times (years) as noted for the reactive diffusion model with LAB = 3 m. .. 20
Figure 4: The calculated mineral composition plotted versus time for a) LAB = 3 m, b) LAB = 1 m. .. 21
Figure 5: Plot of average molalities of Na+, CO2(aq) and HCO3- versus time. Plot of average pH and -log m1,aq versus time. .. 23
Figure 6: The average CO2 stored per m³ of a sandstone layer of 3-m thickness. 25
Figure 7: The effect of changes in the rate constants for oligoclase, albite and smectite on the relative total CO2 stored in the sandstone plotted versus time. .. 27
Figure 8: The effect of the oligoclase rate constant on CO2 sequestration for the three mechanisms. .. 28
Figure 9: The effect of changes in the albite rate constant on CO2 storage over time by the three different mechanisms. ... 29
Figure 10: The effect of changes in the smectite rate constant on CO2 stored versus time for the three sequestration mechanisms .. 30
Figure 11: Plots of oligoclase and smectite volume fractions versus distance inside the 3-m thick sandstone layer for different values of the oligoclase and smectite kinetic constant. .. 31
Figure 12: Plots of albite volume fractions versus distance inside the 3 m-thick sandstone layer plotted for different values of the albite kinetic constant .. 32
Figure 13: Interaction among minerals during CO2 sequestration .. 33
Figure 14: Setup of the reactive diffusion model for simulation of the contact between the reservoir (sandstone) and the caprock (shale). .. 35
Figure 15: The profiles of distributions in vertical dimension through sandstone and shale for dissolved in brine CO2,aq/mol kg⁻¹, pH, and Eh/V at different times 10, 100, 1,000, and 5,000 years. .. 38
Figure 16: The evolution of the average mineral volume fractions in the shale at the ss/sh interface, in the shale in the 0–1 m sub-layer defined from the interface into the shale, and in sandstone for the integral 0–2.5 m layer of sandstone. .. 39
Figure 17: Average saturation indices, log(Q/Keq), for minerals in shale at the ss/sh interface, in the shale for the 0–1 m sub-layer from the interface inward the shale, and in sandstone for the integral 0–2.5 m layer of sandstone plotted versus time ... 40
Figure 18: The average CO2 accumulated per m³ of the sandstone (2.5 m) and shale (5 m) layers versus time where dashed and solid lines correspond to sandstone and shale layers, respectively. .. 42
Figure 19: Plot of four primary aqueous species molalities (Al(OH)₃, Mg²⁺, Fe³⁺, Ca²⁺) versus vertical space coordinate for times 3,500, 3,750, 4,000, 5,000, and 5,500 a. .. 44
Figure 20: Mineral precipitation (ankerite, dolomite) and dissolution (chlorite, calcite) in the shale reactive zone between 3,500 and 7,000 years. ... 46
Figure 21: Mineral precipitation (illite, goethite) and dissolution (kaolinite, microcline) in the shale reactive zone and in the sandstone between 3,500 and 7,000 years. 47
List of Figures (cont.)

Figure 22: Profiles showing vertical distributions through the sandstone and shale for molecular CO$_2$,aq/mol kg-1 dissolved in brine for nF = 2 (left side), and nF = 2.5 (right side) for different times. ... 51

Figure 23: Profiles showing vertical distributions through the sandstone and shale for molecular CO$_2$,aq/mol kg-1 dissolved in brine at $\alpha = 0.09 \times 2/\pi$, and $\alpha = 0.03 \times 2/\pi$ for different times. ... 52

Figure 24: The porosity closure curves at varying parameters in Archie law for formation factor. .. 53

Figure 25: Transformation of shale reactive zone (tracked by ankerite profile) in result of parameter variation in Archie law for formation factor. .. 54

Figure 26: The time dependence of total relative CO$_2$ abundance accumulated in shale until terminal time at varied parameters of Archie law. ... 55

Figure 27: The shale porosity evolution in the point of contact with sandstone in simulations using varying mineral kinetic constants. .. 56

Figure 28: The time dependence of the relative abundance of CO$_2$ accumulated in the shale through different mechanisms of CO$_2$ sequestration (storage) calculated assuming different values of the Kln kinetic constant. .. 58

Figure 29: The evolution of mineral saturations in shale at interface ss/sh under conditions of kaolinite kinetic constant varying. ... 60

Figure 30: The activities of primary dissolved aqueous species ($a_{A1(OH)3}$ and principal iron (II) activity) and pH plotted versus vertical distance at ss/sh contact (50 and 100 years) for the case of high kaolinite kinetic constant (10 times the standard value) in comparison with standard kinetic case. ... 61

Figure 31: The time dependence of relative CO$_2$ abundance accumulated in shale through different mechanisms of CO$_2$ sequestration (storage) at various values of the illite (III) kinetic constant. .. 63

Figure 32: The evolution of mineral volume fractions in shale at the interface of ss/sh for simulations with various values of the illite kinetic constant. ... 64

List of Tables

Table 1: Average composition of North American oil field brines based on published compositions ... 5

Table 2: Mineral compositions of sandstone and shale .. 6

Table 3: Thermodynamic parameters of minerals and aqueous species at T = 75°C (348.15 K) and P = 30 MPa... 7

Table 4: Dissolution rate parameters for minerals1 ... 10

Table 5: Mineral grain sizes at a given volume fractions and mineral specific surface areas 14

Table 6: Baseline brine composition1 based on average oil-field brine compositions 19

Table 7: Summary of mineral/fluid reactions1 due to CO$_2$ invasion into sandstone 24

Table 8: Initial equilibrium speciation of sandstone and shale pore brines 36
Acronyms, Abbreviations, and Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>Backward differentiation formula</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DAE</td>
<td>Differential/algebraic equations</td>
</tr>
<tr>
<td>IAF</td>
<td>Inverse Archie factor</td>
</tr>
<tr>
<td>LCE</td>
<td>Local chemical equilibrium</td>
</tr>
<tr>
<td>MSA</td>
<td>mean spherical approximation</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial differential equations</td>
</tr>
<tr>
<td>REV</td>
<td>Representative elemental volume</td>
</tr>
<tr>
<td>SC</td>
<td>Supercritical</td>
</tr>
<tr>
<td>ss/sh</td>
<td>Sandstone/shale</td>
</tr>
<tr>
<td>STT</td>
<td>Standard termination time</td>
</tr>
</tbody>
</table>

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>year (365 days)</td>
</tr>
<tr>
<td>(A_m)</td>
<td>chemical affinity of reaction mineral/fluid</td>
</tr>
<tr>
<td>(a_i)</td>
<td>activity of (i)th aqueous species in molal scale</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>coefficient in the Archie law</td>
</tr>
<tr>
<td>(D)</td>
<td>effective diffusion coefficient through porous medium (m²s⁻¹)</td>
</tr>
<tr>
<td>(D_{\text{aq}})</td>
<td>diffusion coefficient in pore solution (m²s⁻¹)</td>
</tr>
<tr>
<td>(E_{H,m}, E_{W,m},) and (E_{\text{OH},m})</td>
<td>three activation energies for dissolution by the acidic, neutral and basic mechanisms, respectively (J mol⁻¹)</td>
</tr>
<tr>
<td>(F_{\text{inv}})</td>
<td>inverse of the Archie formation factor</td>
</tr>
<tr>
<td>(\phi)</td>
<td>rock porosity</td>
</tr>
<tr>
<td>(\phi_m)</td>
<td>volume fraction of mineral (m)</td>
</tr>
<tr>
<td>(\gamma_i)</td>
<td>activity coefficient of (i)th aqueous species for the 1 mol kg⁻¹ molal standard state</td>
</tr>
<tr>
<td>(I_m)</td>
<td>reaction rate for (m)th mineral (mol m⁻² s⁻¹)</td>
</tr>
<tr>
<td>(k_m)</td>
<td>kinetic constant for mineral (m) (mol m⁻² s⁻¹)</td>
</tr>
</tbody>
</table>
Acronyms, Abbreviations, Symbols (cont.)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{sand}</td>
<td>sandstone permeability (m^2)</td>
</tr>
<tr>
<td>K_G</td>
<td>number of electrically neutral Gibbs components of the system</td>
</tr>
<tr>
<td>M_{NL_m}</td>
<td>m^{th} mineral</td>
</tr>
<tr>
<td>m_i</td>
<td>molality of i^{th} aqueous species</td>
</tr>
<tr>
<td>M_k</td>
<td>total molality of k^{th} independent component</td>
</tr>
<tr>
<td>N_m</td>
<td>number of minerals</td>
</tr>
<tr>
<td>N_{aq}</td>
<td>number of aqueous solutes</td>
</tr>
<tr>
<td>N_p</td>
<td>number of the primary aqueous species</td>
</tr>
<tr>
<td>N_s</td>
<td>number of secondary aqueous species</td>
</tr>
<tr>
<td>n_m</td>
<td>constant number of m^{th} mineral grains per unit volume of a porous medium (m$^{-3}$)</td>
</tr>
<tr>
<td>η_{brine}</td>
<td>brine viscosity (Pa s)</td>
</tr>
<tr>
<td>PR_k</td>
<td>k^{th} primary species</td>
</tr>
<tr>
<td>$r_{m,n}$</td>
<td>radii of ion complexes and associates</td>
</tr>
<tr>
<td>ρ^*</td>
<td>mass of water per unit volume of aqueous solution (kg m$^{-3}$)</td>
</tr>
<tr>
<td>SC_i</td>
<td>i^{th} secondary species</td>
</tr>
<tr>
<td>s_m</td>
<td>specific surface area of mineral m (m2 m$^{-3}$)</td>
</tr>
<tr>
<td>$\overline{S}_{CO_2,\text{tot}}$</td>
<td>dimensionless quantity of stored CO$_2$</td>
</tr>
<tr>
<td>V_m^0</td>
<td>molar volume of mineral m</td>
</tr>
<tr>
<td>V_c^D</td>
<td>Darcy velocity for convection</td>
</tr>
<tr>
<td>y_i</td>
<td>activity coefficient of i^{th} aqueous species for the 1 mol dm$^{-3}$ standard state of MSA</td>
</tr>
<tr>
<td>$[CO_2]$</td>
<td>amount of stored CO$_2$ per m3 of rock</td>
</tr>
</tbody>
</table>
Acknowledgments

This work was completed as part of National Energy Technology Laboratory (NETL) research for the U.S. Department of Energy’s (DOE) Carbon Storage Program. The authors wish to acknowledge Cindy Powell and Traci Rodosta (NETL Research & Innovation Center) as well as Angela Goodman (NETL Technical Portfolio Manager Carbon Storage) for guidance, direction, support, and for helpful discussions and presentation of our achievements.
This page intentionally left blank.
EXECUTIVE SUMMARY

One idea for mitigating the increase in fossil-fuel generated carbon dioxide (CO₂) in the atmosphere is to inject CO₂ into subsurface saline sandstone reservoirs, thereby storing it in those geologic formations and out of the atmosphere. To decide whether safe and effective geologic storage can be implemented at a globally significant scale will require the ability to reliably predict the fate of injected CO₂. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions related to dissolution and mineral trapping of injected CO₂, and to the geochemical alteration of storage reservoir and sealing-interval rock. Several reactive transport models for CO₂ sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO₂ m⁻³. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO₂ fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO₂ is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO₂ trapping.

A reactive diffusion model was expanded for use in an investigation of the reactions and transport of CO₂ and aqueous solutes during CO₂ injection into a subsurface geological reservoir. The simulation focused on the sandstone/shale (ss/sh) interface that represents the boundary between the storage interval and caprock seal. A series of reactive diffusion calculations was run to simulate reaction and transport of SC CO₂ in a hypothetical reservoir at the ss/sh interface at 348.15 K and 30 MPa for up to 20,000 years. During the first period (up to 2,000 years) the shale functioned as a low-permeable barrier (caprock), and the chemical reactions mostly occurred in the sandstone. However, at the ss/sh interface, the precipitation of microcline, kaolinite and dolomite were observed. In the second period (2,000–4,000 years), the CO₂ reactive transport begins to initiate the replacement of Mg-Fe chlorite by ankerite, dolomite, and illite at the ss/sh interface. In the third period (4,000–7,500 years), this carbonation reaction in the shale led to complete closure of the porosity at the interface, further sealing the reservoir and terminating further reaction.

The sensitivity of the reactive system to the mineral kinetic constants and to the shale transport properties (i.e., the Archie formation factor) was quantitatively determined and analyzed. It was found that the time sequence described above is extremely sensitive to the kinetic constants of clay minerals. For example, an increase in the kaolinite kinetic constant by 0.25 and 0.5 logarithmic units resulted in earlier porosity closure by 4,300 and 650 years, respectively. The modeling output is useful in understanding issues around the long-term effectiveness of CO₂ storage in sandstone reservoirs beneath shale caprock.
1. **INTRODUCTION**

Climate change is beginning to impact human systems on Earth. One of the most important boundary conditions on maintenance of the Earth system (Rockström et al., 2009) is the content of greenhouse gas carbon dioxide (CO₂) in the atmosphere. A potential solution to mitigate increases in atmospheric CO₂ is to capture CO₂ and inject it into deep geologic storage formations consisting of porous units capped by impermeable barriers.

CO₂ storage in deep saline reservoirs is one option for mitigation of CO₂ emissions, which are projected to reach 6,300 million metric tons of CO₂ equivalent by 2035 (NETL ATLAS, 2010). Deep saline reservoirs in the United States have been estimated by the U.S. Regional Carbon Sequestration Partnerships to provide the capacity for roughly 20,000 billion metric tons of CO₂ storage (NETL ATLAS, 2010). This storage volume is roughly two orders of magnitude greater than potential CO₂ storage in depleted oil and gas reservoirs. Thus, deep saline reservoirs are a primary long-term focus for geologic CO₂ storage in the U.S. In the near term, geological storage of CO₂ in conjunction with CO₂-enhanced oil recovery is increasingly being recognized as an important commercial option for CO₂ capture, utilization, and storage.

Geological CO₂ storage requires an ability to predict the behavior of the geologic system over both the near- and long-term. Near-term behavior includes changes that occur during injection and in the period post-closure when the storage system may be relatively more dynamic, while long-term behavior includes changes during the stewardship phase that lasts from decades to hundreds of years. Many aspects of CO₂ behavior during injection can be predicted based on historical experience from oil and gas operations, but many of the longer-term effects may require additional investigation. Furthermore, because storage lifetimes must exceed the duration of present-day field tests of CO₂ storage by orders of magnitude, conceptual and numerical models are needed that represent the important geochemical processes. Specifically, models are needed to understand whether injection will effectively sequester the CO₂ for time periods that are long enough to warrant the economic investment, to meet regulations, and to convince the public that storage reservoirs are safe.

Geochemical calculations are needed to predict reactions that range from dissolution of CO₂ in brines to precipitation of storage-reservoir minerals. Such calculations rely on thermodynamic and kinetic databases. There are many sources of uncertainty in data on mineral/fluid kinetics. First, there are experimental errors. Second, it is common to discover differences between reaction rates measured at the laboratory and field scales (White and Brantley, 2003). Often under experimental conditions the reactions take place at large fluid/rock ratios at the free fluid/mineral interface. In contrast, the same reactions take place in nature at the mineral/pore fluid interface at a small fluid/rock ratio. Consequently, reactions in rock porous media generally are closer to equilibrium in natural systems than in the laboratory. The kinetic mechanisms of these mineral/fluid reactions in natural systems can therefore be different (Arvidson and Lütteg, 2010). The next source of uncertainty is in upscaling from the pore-grain scale to the level of the representative elemental volume (REV) of the rock (Li et al., 2007; Kang et al., 2010). Uncertainty is also entailed in describing the reactive surface area of minerals (Rimstidt et al., 2012). Therefore, sensitivity tests must be run to understand how uncertainties in kinetic data, in mechanisms, in upscaling and in mineral active surface area affect model output. A better understanding of model variability induced by differences in kinetics is of importance to confidently predict CO₂ storage permanence.
A simple approach was applied to probe the impact of uncertainties in both kinetic constants and the Archie formation factor. A simple general kinetic law was used for mineral/fluid interaction supported by experimental kinetic constants to explore the uncertainties in mineral/fluid kinetics by systematically varying kinetic constants within ± 1 order of magnitude. The uncertainties of shale diffusivity were also evaluated by varying the Archie formation factor.

In the first part of the work (Balashov et al., 2013), a case study consisting of a baseline reservoir + brine is defined. Ninety percent of sequestration reservoirs in the U.S. are likely to be clastic (Wildgust et al., 2011). The temperature (T), pressure (P), mineralogy, and chemistry of the baseline reservoir were chosen to represent a rough average of the characteristics of sandstone-hosted reservoirs currently proposed in the U.S. for sequestration. Modeling the reactivity of a clastic reservoir is a particular challenge because of the variety of minerals that can be present.

In the second part of the work (Balashov et al., 2015) the earlier model was extended by incorporating the shale caprock into the model system. Porous sandstone reservoirs capped by shale constitute one important type of storage formation. This simulation required the addition of four new chemical components to the previously modelled sandstone system (i.e., MgO, FeO, O₂, H₂SO₄). This model allows us to simulate diffusion and chemical alteration at the interface of the sandstone/shale (ss/sh). Diffusion is the main transport process at the caprock interface because of the low porosity and high tortuosity of the shale.

The third part of this work begins to address the influence of organic matter on the system. This approach is to develop a simple model that incorporates acetic acid in the pore water in the shale.
2. METHODS

2.1 GEOPHYSICAL AND GEOCHEMICAL CONDITIONS

Mineral reactivity is strongly influenced by temperature, which affects solubility and reaction kinetics, and by the confining pressure, which determines the maximum CO₂ pressure attainable. If storage is targeted for depths below ~0.8 km, CO₂ will exist as a supercritical fluid and will, therefore, require less storage volume. Furthermore, as noted by Stauffer et al. (2009), changes in depth-related properties such as viscosity, density, and injection pressures may favor deeper wells both economically and with respect to risk. However, depth must also be considered in terms of drilling costs (Stauffer et al., 2009). Recognizing such trade-offs, it is assumed that reservoir storage depth will most likely be between 1 and 3 km. Given that the average continental geothermal gradient is ~25°C/km, temperatures will likely range between ~50 and 100°C. It might be reasonable to extend this temperature range up to 125°C because sediments are good insulators and the geothermal gradient in some sedimentary basins might be as high as 35°C/km. Thus, at 3 km depth, T = 130°C. Here, 2 km is chosen as a prototypical depth for the storage reservoir and a temperature of 75°C.

Solutions with a density near 1g/cm³ are consistent with a hydrostatic pressure gradient of 10 MPa/km (100 bar/km). Likewise, sedimentary rocks with a density of ~2.3 g/cm³ are consistent with a lithostatic pressure gradient of ~23 MPa/km. However, it is unlikely that storage reservoir pressures will exceed about 65% of lithostatic pressure because rock units tend to hydrofracture if pressurized above this value (Dickinson and Suczek, 1979). This bounds the envelope of CO₂ pressure that could be present in a storage reservoir by an upper limit of 14.5 MPa/km. The upper limit of P_{CO₂} in a storage reservoir at a depth of 2 km, 30 MPa (Figure 1), is, therefore, chosen for the baseline model. Thus, temperature (T) and pressure (P) for the baseline sandstone reservoir were set for a system at a prototypical depth of 2 km (Balashov et al., 2013). Temperature, T was set at 75°C and pressure, P, at 30 MPa.

The saline pore fluids in sandstone reservoirs are typically dominated by NaCl with significant CaCl₂ and additional K₂SO₄ and MgCl₂. Values from the most comprehensive compilation of North American oil-field brine compositions were averaged to obtain the concentrations used for the modeled brine shown in Table 1 (Collins, 1975). In Table 1, N = the number of published analyses used to calculate the average.
Table 1: Average composition of North American oil field brines based on published compositions (Collins, 1975)

<table>
<thead>
<tr>
<th>Species</th>
<th>mg/L</th>
<th>molality</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl⁻</td>
<td>74,803</td>
<td>2.1071</td>
<td>3397</td>
</tr>
<tr>
<td>Na⁺</td>
<td>37,262</td>
<td>1.6201</td>
<td>3397</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>7,858</td>
<td>0.1960</td>
<td>3392</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>1,514</td>
<td>0.0623</td>
<td>3364</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>535</td>
<td>0.0056</td>
<td>2673</td>
</tr>
<tr>
<td>K⁺</td>
<td>519</td>
<td>0.0132</td>
<td>429</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>246</td>
<td>0.0040</td>
<td>3143</td>
</tr>
</tbody>
</table>

N = the number of published analyses used to calculate the average

2.2 MINERALOGY, THERMODYNAMICS, AND KINETICS

In the first part of this work (Balashov et al., 2013) the chemistry and mineralogy was restricted to the eight-component system, SiO₂-Al₂O₃-CaO-Na₂O-K₂O-HCl-CO₂-H₂O and a relatively simple baseline mineralogy (Table 2). To choose the mineralogy, sandstones derived from continental block lithologies were emphasized to avoid complications associated with lithic fragments (Dickinson and Suczek, 1979). The feldspar content of such sandstones has been observed to range up to 50% (Dickinson and Suczek, 1979). The baseline sandstone was, therefore, assumed to contain a total feldspar content of 26% (18% K-feldspar, 8% plagioclase). These values are higher than the previously reported average value of 15% for sandstones (Pettijohn et al., 1987). However, the higher feldspar value is not dissimilar from many observed values. Although plagioclase compositions vary up to An₇₀ (Trevena and Nash, 1979), an average value of An₂₀ (oligoclase) was chosen because oligoclase is the most common feldspar mineral in surface systems. The average feldspar grain diameter was set to 0.125 mm based on published results (Odom, 1976). Geometric specific surface areas were assumed for all minerals. Based upon these considerations, the baseline sandstone was set to the mineralogy summarized in Table 2.

In the second part (Balashov et al., 2015), the 12-component system was extended to, SiO₂-Al₂O₃-CaO-MgO-FeO-Na₂O-K₂O-HCl-H₂SO₄-CO₂-O₂-H₂O. A relatively simple baseline ss/sh mineralogy was chosen (Table 2). The shale mineralogy (Hosterman and Whitlow, 1983) was chosen to be close to that of a black shale like that of the Marcellus formation (Table 2), which is of interest for shale gas research, but is also considered a secondary caprock for the Oriskany formation (a formation under consideration for geologic storage of CO₂; Kostelnik and Carter, 2009).

The apparent Gibbs free energies of minerals and aqueous species are represented in Table 3. These data were compiled from published data (Holland and Powell, 1998, 2011) for the
minerals, and from Supcr92 (Johnson et al., 1992) and another compilation (Pokrovskii and Helgeson, 1995) for the aqueous species. The smectite and chlorite Gibbs free energies of formation from elements was calculated through the sum of polyhedral contributions by a published method (Chermak and Rimstidt, 1989, 1990a).

The water density, dielectric constant and compressibility are from published values (Wagner and Pruss, 2002). The viscosity is derived also from published values (Sengers and Watson, 1986), as is the ionization constant (Johnson et al., 1992).

Table 2: Mineral compositions of sandstone and shale

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Formula</th>
<th>Sandstone mass %</th>
<th>Sandstone volume %</th>
<th>Marcellus Shale: Chevron mass %</th>
<th>Marcellus Shale: Chevron volume %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO₂</td>
<td>65</td>
<td>48.75</td>
<td>38</td>
<td>38.41</td>
</tr>
<tr>
<td>Microcline</td>
<td>KAl₃Si₈O₁₈</td>
<td>18</td>
<td>13.5</td>
<td>2</td>
<td>2.10</td>
</tr>
<tr>
<td>Oligoclase</td>
<td>Cₐ₂Na₀.₈Al₁.₂Si₂.₈O₈</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calcite</td>
<td>CaCO₃</td>
<td>5</td>
<td>3.75</td>
<td>5</td>
<td>4.93</td>
</tr>
<tr>
<td>Smectite</td>
<td>K₀.₀₃Ca₀.₃₉Al₁.₇₇Si₃.₉₇O₁₀(OH)₂</td>
<td>3</td>
<td>2.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smectite</td>
<td>K₀.₀₅Ca₀.₈Al₂.₅(Fe₀.₅Mg₀.₇) Si₇.₆₅Al₀.₃₅O₂₀(OH)₄</td>
<td>3</td>
<td>2.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Illite (+mica)</td>
<td>KAl₃Si₃O₁₀(OH)₂</td>
<td>1</td>
<td>0.75</td>
<td>35</td>
<td>33.13</td>
</tr>
<tr>
<td>Pyrite</td>
<td>FeS₂</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2.67</td>
</tr>
<tr>
<td>Chlorite</td>
<td>Mg₂.₇Fe₁.₈FeIII₀.₁₂Al₁.₃₉[Al₁.₅Si₂.₅O₁₀(OH)₈]b</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>13.76</td>
</tr>
<tr>
<td>Porosity</td>
<td>volume %</td>
<td>25</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary minerals that may form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albite</td>
<td>NaAlSi₅O₁₈</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Al₂Si₃O₅(OH)₄</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankerite</td>
<td>CaFe₀.₆Mg₀.₄(CO₃)₂</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderite</td>
<td>FeCO₃</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>CaMg(CO₃)₂</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td>FeOOH</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td>Fe₃O₄</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Smectite composition for baseline sandstone
b Lowson et al. (2005)
Table 3: Thermodynamic parameters of minerals and aqueous species at \(T = 75^\circ\text{C}\) (348.15 K) and \(P = 30\ \text{MPa}\)

<table>
<thead>
<tr>
<th>Chemical Entity</th>
<th>(G^0_{348\ \text{K}} / \text{kJ mole}^{-1}) a</th>
<th>(V^0_{348\ \text{K}} / \text{cm}^3\text{ mole}^{-1}) b</th>
<th>Ionic radii /Å of Aqueous Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz c</td>
<td>-857.81</td>
<td>22.688</td>
<td>NA</td>
</tr>
<tr>
<td>Albite</td>
<td>-3720.27</td>
<td>100.06</td>
<td>NA</td>
</tr>
<tr>
<td>Microcline</td>
<td>-3758.57</td>
<td>108.92</td>
<td>NA</td>
</tr>
<tr>
<td>Oligoclase, An20 d</td>
<td>-3779.43</td>
<td>100.206</td>
<td>NA</td>
</tr>
<tr>
<td>Calcite</td>
<td>-1133.05</td>
<td>36.89</td>
<td>NA</td>
</tr>
<tr>
<td>Smectite e, i</td>
<td>-5361.55</td>
<td>140.0</td>
<td>NA</td>
</tr>
<tr>
<td>Smectite e</td>
<td>-10585.</td>
<td>280.0</td>
<td>NA</td>
</tr>
<tr>
<td>Illite</td>
<td>-5615.43</td>
<td>140.83</td>
<td>NA</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>-3809.86</td>
<td>99.34</td>
<td>NA</td>
</tr>
<tr>
<td>Pyrite</td>
<td>-162.41</td>
<td>23.94</td>
<td>NA</td>
</tr>
<tr>
<td>MgFe-chlorite e</td>
<td>-7770.</td>
<td>211.4</td>
<td>NA</td>
</tr>
<tr>
<td>Dolomite</td>
<td>-2169.76</td>
<td>64.34</td>
<td>NA</td>
</tr>
<tr>
<td>Ankerite</td>
<td>-1966.36</td>
<td>65.37</td>
<td>NA</td>
</tr>
<tr>
<td>Siderite</td>
<td>-692.62</td>
<td>29.43</td>
<td>NA</td>
</tr>
<tr>
<td>Magnetite</td>
<td>-1018.36</td>
<td>44.52</td>
<td>NA</td>
</tr>
<tr>
<td>Goethite</td>
<td>-498.42</td>
<td>20.82</td>
<td>NA</td>
</tr>
<tr>
<td>SC CO2 f</td>
<td>-391.12</td>
<td>57.908</td>
<td>NA</td>
</tr>
<tr>
<td>H+</td>
<td>0</td>
<td>0</td>
<td>1.40</td>
</tr>
<tr>
<td>O2(aq)</td>
<td>11.222</td>
<td>33.2</td>
<td>1.40</td>
</tr>
<tr>
<td>Na+</td>
<td>-264.96</td>
<td>1.1</td>
<td>0.95</td>
</tr>
<tr>
<td>K+</td>
<td>-287.25</td>
<td>10.7</td>
<td>1.33</td>
</tr>
<tr>
<td>Mg2+</td>
<td>-447.705</td>
<td>-21.</td>
<td>0.65</td>
</tr>
<tr>
<td>Ca2+</td>
<td>-550.38</td>
<td>-16.6</td>
<td>0.99</td>
</tr>
<tr>
<td>Fe3+</td>
<td>-86.801</td>
<td>-21.8</td>
<td>0.75</td>
</tr>
<tr>
<td>Al(OH)3(aq) 8</td>
<td>-1107.47</td>
<td>14.6</td>
<td>2.03</td>
</tr>
<tr>
<td>SiO2(aq)</td>
<td>-836.03</td>
<td>13.7</td>
<td>2.23</td>
</tr>
<tr>
<td>SO42-</td>
<td>-744.053</td>
<td>15.7</td>
<td>2.30</td>
</tr>
<tr>
<td>Cl-</td>
<td>-133.168</td>
<td>17.3</td>
<td>1.81</td>
</tr>
<tr>
<td>CO2(aq)</td>
<td>-391.69</td>
<td>34.3</td>
<td>1.87</td>
</tr>
<tr>
<td>H2O</td>
<td>-240.429</td>
<td>18.24</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 3: Thermodynamic parameters of minerals and aqueous species at $T = 75^\circ C$
(348.15 K) and $P = 30$ MPa (continued)

<table>
<thead>
<tr>
<th>Chemical Entity</th>
<th>$G^{298_{K}} / kJ$ mole$^{-1}$</th>
<th>$V^{298_{K}} / cm^3$ mole$^{-1}$</th>
<th>Ionic radii /Å of Aqueous Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH$^-$</td>
<td>-156.42</td>
<td>-3.2</td>
<td>1.40</td>
</tr>
<tr>
<td>H$_2$(aq)</td>
<td>15.033</td>
<td>26.9</td>
<td>1.40</td>
</tr>
<tr>
<td>H$_3$SiO$_4^-$</td>
<td>-1255.55</td>
<td>10.2</td>
<td>2.23</td>
</tr>
<tr>
<td>NaCl(aq)</td>
<td>-393.97</td>
<td>25.7</td>
<td>1.89</td>
</tr>
<tr>
<td>KCl(aq)</td>
<td>-412.72</td>
<td>38.5</td>
<td>2.02</td>
</tr>
<tr>
<td>MgCl$^+$</td>
<td>-580.81</td>
<td>2.1</td>
<td>1.84</td>
</tr>
<tr>
<td>CaCl$^+$</td>
<td>-679.95</td>
<td>6.3</td>
<td>1.90</td>
</tr>
<tr>
<td>CaCl$_2$(aq)</td>
<td>-812.49</td>
<td>33.4</td>
<td>2.34</td>
</tr>
<tr>
<td>FeCl$_2$(aq)</td>
<td>-338.85</td>
<td>28.2</td>
<td>2.31</td>
</tr>
<tr>
<td>Fe$^{+++}$</td>
<td>-4.234</td>
<td>-43.4</td>
<td>0.60</td>
</tr>
<tr>
<td>NaOH(aq) g</td>
<td>-416.38</td>
<td>2</td>
<td>1.53</td>
</tr>
<tr>
<td>KOH(aq) g</td>
<td>-440.16</td>
<td>15.8</td>
<td>1.72</td>
</tr>
<tr>
<td>Al$^{+++}$ g</td>
<td>-471.64</td>
<td>-45.7</td>
<td>0.50</td>
</tr>
<tr>
<td>Al(OH)$^{++}$ g</td>
<td>-687.57</td>
<td>-18.7</td>
<td>1.42</td>
</tr>
<tr>
<td>Al(OH)$_2^+$ g</td>
<td>-898.36</td>
<td>7.1</td>
<td>1.78</td>
</tr>
<tr>
<td>Al(OH)$_4^-$ g</td>
<td>-1310.29</td>
<td>11.3</td>
<td>2.23</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>-590.99</td>
<td>26.</td>
<td>1.56</td>
</tr>
<tr>
<td>CO$_3^{--}$</td>
<td>-524.70</td>
<td>-6.3</td>
<td>1.85</td>
</tr>
<tr>
<td>HSO$_4^-$ h</td>
<td>-761.98</td>
<td>35.5</td>
<td>2.46</td>
</tr>
<tr>
<td>NaHSO$_4$(aq) h</td>
<td>-1029.59</td>
<td>40.</td>
<td>2.51</td>
</tr>
<tr>
<td>Na$_2$SO$_4$(aq) h</td>
<td>-1286.52</td>
<td>40.</td>
<td>2.40</td>
</tr>
<tr>
<td>NaSO$_4^{--}$ h</td>
<td>-1015.75</td>
<td>30.</td>
<td>2.35</td>
</tr>
<tr>
<td>K$_2$SO$_4$(aq) i</td>
<td>-1315.31</td>
<td>40.</td>
<td>2.56</td>
</tr>
<tr>
<td>KSO$_4^{--}$ i</td>
<td>-1037.79</td>
<td>29.2</td>
<td>2.44</td>
</tr>
</tbody>
</table>

a Apparent standard Gibbs free energy
b Standard molar volume
c SUPCRT92
d Calculated by Holland and Powell (1992) model #1
e Calculated by Chermak and Rimstidt (1990a) algorithm
f Duan and Sun (2003)
g Pokrovskii and Helgeson (1995)
h Gibbs apparent free energy Hnedkovsky et al. (2005)
i Gibbs apparent free energy Sharygin et al. (2006)
j Smectite for the baseline sandstone
The mean spherical approximation (MSA) was used (Blum and Høye, 1977) to calculate activity coefficients in aqueous brine solution with dissolved CO₂. The MSA equation is more accurate than the Debye–Hückel equation because it is consistent with both the Debye–Hückel limiting law at low concentrations and the correct hard sphere ion repulsion model in very concentrated solution. The extended Debye–Hückel equation was not used for concentrated electrolyte solutions because it requires the special adjustment of two empirical parameters for the ion size and ion-ion interaction (Oelkers and Helgeson, 1990; Helgeson et al., 1981).

The activity coefficients for the 1 mol dm⁻³ standard state of MSA can be expressed in the form of electrostatic (el) and hard sphere (hs) contributions

\[
\ln y_i = \ln y_{i}^{el} + \ln y_i^{hs}
\]

The MSA expressions (Blum and Høye, 1977) for the electrostatic and hard sphere parts were previously discussed (Sharygin et al., 2002). The practice of MSA for electrolyte solutions (Sharygin et al., 2002, 2006; Hnedkovsky et al., 2005) showed that a good choice for the hard sphere ionic radii is to use the crystallographic radii (Marcus, 1985) in the equations so that there are no adjustable parameters. The radii of ion complexes and associates \(A_m B_n \) were calculated (Table 3) as

\[
r_{m,n} = \sqrt[3]{mr_A^3 + nr_B^3}
\]

where \(r_i \) are the crystallographic radii of the corresponding ions. The MSA activity coefficients were calculated for an aqueous solution of average brine composition (Table 1), with the addition of dissolved 0.74 mol kg⁻¹ CO₂. These activity coefficients have been used in all the reactive diffusion transport calculations as constant values.

The rate laws describing mineral dissolution/precipitation (Equation 15) were formulated following a published approach (Marini, 2007; Palandri and Kharaka, 2004; Lowson et al., 2005, 2007; Brantley, 2008; Köhler et al., 2003). The kinetic function for mineral \(m \) is expressed as the sum of three contributions

\[
k_m = k_{H,m} + k_{W,m} + k_{OH,m}
\]

where

\[
k_{H,m} = a_{H,m}^{n_{H,m}} A_{H,m} \exp \left(- \frac{E_{H,m}}{RT} \right)
\]

\[
k_{W,m} = A_{W,m} \exp \left(- \frac{E_{W,m}}{RT} \right)
\]

\[
k_{OH,m} = (b_{H,m} a_{H,m}^{n_{OH,m}} + b_{OH,m} a_{OH,m}^{n_{OH,m}}) A_{OH,m} \exp \left(- \frac{E_{OH,m}}{RT} \right)
\]
This approach relies on the use of three activation energies $E_{H,m}$, $E_{W,m}$, and $E_{OH,m}$ for dissolution by the acidic, neutral, and basic mechanisms, respectively. In some cases (Palandri and Kharaka, 2004), the basic mechanism is expressed using the term a_{H}^{OH}, while in other cases (Brantley, 2008; Köhler et al., 2003) by the term a_{OH}^{OH}. For this reason, in Equation 6 the coefficients b_{H} and b_{OH} (which equal 0 or 1) have been introduced. In other words, either term can be used (but not both) depending upon how the original authors parameterized their model. The parameters used in Equations 3–6 for the model are represented in Table 4. These kinetic constants were varied over suitable ranges in sensitivity tests to assess how the uncertainties in kinetics affected the CO$_2$ storage in sandstone under shale capstone.

Table 4: Dissolution rate parameters for minerals1

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Acetic Mechanism</th>
<th>Neutral Mechanism</th>
<th>Basic Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_H</td>
<td>A_H</td>
<td>n_H</td>
</tr>
<tr>
<td></td>
<td>kJ mol$^{-1}$</td>
<td>mol m$^{-2}$s$^{-1}$</td>
<td>kJ mol$^{-1}$</td>
</tr>
<tr>
<td>Quartz</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Albite</td>
<td>65</td>
<td>33.11</td>
<td>0.46</td>
</tr>
<tr>
<td>Microcline</td>
<td>51.7</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Oligoclase</td>
<td>65</td>
<td>52.48</td>
<td>0.46</td>
</tr>
<tr>
<td>Calcite</td>
<td>14.4</td>
<td>165.96</td>
<td>1</td>
</tr>
<tr>
<td>Smectite</td>
<td>23.6</td>
<td>1.41x10$^{-7}$</td>
<td>0.34</td>
</tr>
<tr>
<td>Illite2</td>
<td>46</td>
<td>2.2x10$^{-4}$</td>
<td>0.6</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>65.9</td>
<td>1.74</td>
<td>0.78</td>
</tr>
<tr>
<td>Chlorite3</td>
<td>60</td>
<td>5.27</td>
<td>0.49</td>
</tr>
<tr>
<td>Dolomite</td>
<td>36.1</td>
<td>1.36x103</td>
<td>0.5</td>
</tr>
<tr>
<td>Ankerite4</td>
<td>36.1</td>
<td>1.36x103</td>
<td>0.5</td>
</tr>
<tr>
<td>Siderite5</td>
<td>14.4</td>
<td>1.39x10$^{-4}$</td>
<td>1</td>
</tr>
<tr>
<td>Magnetite</td>
<td>18.6</td>
<td>4.66x10$^{-8}$</td>
<td>0.28</td>
</tr>
<tr>
<td>Goethite</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SC CO2_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1If it is not shown otherwise all data from Palandri and Kharaka (2004)
2Köhler et al. (2003)
3Lowson et al. (2005, 2007)
4The accepted parameters are identical to dolomite (Palandri and Kharaka, 2004)
5The accepted parameters are identical to magnesite (Palandri and Kharaka, 2004)
6On the basis of Shindo et al. (1995)
The baseline model presented in the first part of this work was designed to simulate the most important geochemical reactions that will occur in a deep saline CO₂ reservoir. However, the simplicity and power of the model comes at the cost of ignoring less abundant minerals. Under assumption of the activation energy for all the dissolution reactions is 65 kJ/mol, reducing the temperature to 50°C will lower the reaction rates by about 0.75 log units. Raising the temperature to 100°C will increase the reaction rates by about 0.65 log units and raising the temperature to 125°C will increase the reaction rates by about 1.22 log units over the 75°C rates.

In the case of chlorite, the 25°C data was used as standard (Lowson et al., 2005) for iron-rich chlorite. The activation energy of iron-rich chlorite dissolution was estimated as 60 kJ mol⁻¹ (Table 4) on the basis of data (Lowson et al., 2007) for the temperature range 25–95°C. The recent data for dissolution of magnesium-rich chlorite (Black and Haese, 2014) from 50 to 120°C and 120 to 200 bar CO₂ demonstrated a lower apparent activation energy of 16 ± 0.5 kJ mol⁻¹. This new activation energy results in a decrease in the chlorite kinetic constant by one order of magnitude at 75°C in comparison with its “standard” value (Table 4). However, the test simulation of reaction + diffusion at the ss/sh contact showed that a decrease in the chlorite kinetic constant by a factor of 10 does not change the model results to a significant extent because chlorite remains close to local equilibrium (see below).

Accurate kinetic laws for pyrite dissolution could be formulated as functions of pH and the activities of aqueous ferric ion and dissolved oxygen (Rimstidt and Newcomb, 1993; McKibben and Barnes, 1986; Williamson and Rimstidt, 1994). The calculations showed that under the conditions used in the simulations, these activities were always too small (Table 5) to produce significant pyrite dissolution even though the brine in the shale was always undersaturated with respect to pyrite. On this basis, the pyrite was treated in the simulation as an inert mineral.

Dawsonite was not included in this model (Balashov et al., 2013). Many studies in the past have predicted the formation of dawsonite at CO₂ sequestration conditions; however, as discussed in more detail previously (Kaszuba et al., 2011), dawsonite has rarely been found as a precipitate in natural analog sites or in laboratory studies. In addition, researchers have noted that the largely undetermined growth and nucleation parameters for dawsonite (Pham et al., 2011) result in much of the uncertainty in model simulations related to dawsonite. Given the on-going debate as to whether or not to include dawsonite in modeling of CO₂ storage systems, it was decided to not include it in the secondary mineral assemblage.

2.3 REACTIVE TRANSPORT MODELING

The fluid phase is water that contains \(N_{aq} \) aqueous solutes. The master variables of the problem are the \(N_p \) molalities of the primary (independent) aqueous species, plus \(N_m \) mineral volume fractions and porosity. Thus, there are \(N_p + N_m + 1 \) variables. The independent chemical components of the system are identical to the primary species. It is assumed that homogeneous aqueous reactions are fast and chemical equilibrium is, therefore, maintained in solution. The secondary species (\(SC_i \)) are generated from primary species (\(PR_k \)) from mass balance and mass action equations.

For the description of reactive transport equations for porous media a published notation was followed (Lichtner, 1996). Implicitly, the choice of primary (p) and secondary (s) species maintains charge balance; thus,
\[N_p = K_G + 1 \]
\[N_s = N_{aq} - N_p \]

Here, \(K_G \) is the number of electrically neutral Gibbs components of the system, and \(N_s \) is the number of secondary species in aqueous pore solution. The mass balance reaction for the secondary species are written in the set of reactions

\[S_i \rightleftharpoons \sum_{k=1}^{k=N_p} v_{ik}^{aq} pR_k, \]
\[i = 1, 2, ..., N_s \]

The activities of secondary species are determined by the chemical equilibria (8) as

\[\ln a_{i,s} = \sum_{k=1}^{k=N_s} v_{ik}^{aq} \ln a_{k,p} - \ln K_i^{aq} \]
\[i = 1, 2, ..., N_s \]

where \(K_i^{aq} \) are thermodynamic equilibrium constants for reactions in (8), \(p \) stands for primary species, and \(s \) for secondary. The activities of aqueous species are determined from their molalities by

\[a_{i,\alpha} = \gamma_{i,\alpha} m_{i,\alpha} \]
\[\alpha = p, s; \; i = 1, 2, ..., N_\alpha \]

where \(\gamma_{i,\alpha} \) are activity coefficients.

The total molalities \(M_k \) of the independent components are determined by equations

\[M_k = m_k + \sum_{i=1}^{i=N_s} v_{ki}^{aq} m_i \]
\[k = 1, 2, ..., N_p \]

The equations of reactive mass transfer for independent components take the form

\[\rho^* \frac{\partial M_k}{\partial t} = \rho^* \frac{\partial}{\partial x} \left(D \frac{\partial M_k}{\partial x} \right) + \sum_{m=1}^{m=N_s} v_{km}^{mT} I_m \]
\[k = 1, 2, ..., N_p \]

where \(\rho^* \) is the mass of water per unit volume of aqueous solution (kg m\(^{-3}\)). In addition, the equations for the volume fractions of minerals are
\[
\frac{1}{V_m^0} \frac{\partial \phi_m}{\partial t} = -I_m
\]

(13)

where \(V_m^0\) is the molar volume of mineral \(m\).

\(I_m\) is the reaction rate of mineral \(MNL_m\) (the rate is written as positive for mineral dissolution),

\[
MNL_m \rightleftharpoons \sum_{k=1}^{k=N_p} v_{mk}^m P_R k
\]

\[m = 1, 2, \ldots, N_m\]

(14)

The rate \(I_m\) of a heterogeneous reaction is written following transition state theory according to the following equation which has been reviewed many times in the literature (e.g., Brantley, 2008):

\[
I_m = s_m k_m(a_{aq}; \exp(-E_{A,m}/RT))(1 - \exp(-A_m/RT))
\]

\[m = 1, 2, \ldots, N_m\]

(15)

In this equation \(s_m\) is the specific surface area of mineral \(m\) (m\(^2\) m\(^{-3}\)). \(A_m\) in Equation 15 is the chemical affinity of Reaction 14 which is included so that rate Law 15 describes mineral dissolution if \(A_m > 0\) and mineral precipitation if \(A_m < 0\). The reaction kinetic constant \(k_m\) is written as \(k_m(a_{aq}; \exp(-E_{A,m}/RT))\) because it is a function of \(a_{aq}\), the activity of any species influencing the rate, and \(E_{A,m}\), the activation energy of the reaction.

Variable surface areas were calculated assuming a uniform fine-grained rock medium. It was calculated per unit volume of rock as

\[
s_m = 6n_m^{1/3} \phi_m^{2/3}
\]

(16)

where \(n_m\) (m\(^{-3}\)) is the constant number of mineral grains per unit volume of a porous medium (Table 5) and \(\phi_m\) is the mineral volume fraction. Taking into account that average mineral grain diameter, \(d_{g,m}\), is expressed as \(d_{g,m} = \left(\frac{\phi_m}{n_m}\right)^{1/3}\), the last Equation 16 can be rewritten as a function of grain diameter

\[
s_m = 6n_m \left(\frac{\phi_m}{n_m}\right)^{2/3} = 6n_m \left(d_{g,m}\right)^2
\]

(17)
Equation 16 was used under the assumption that the concentration of mineral grains \(n_m \) is constant. This constant \(n_m \) was defined by assuming an average mineral grain size for the mineral volume fraction (Table 5).

Table 5: Mineral grain sizes at a given volume fractions and mineral specific surface areas

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Vol.% (100 (\phi_m))</th>
<th>Size (mm)</th>
<th>(\text{SSA}_{\text{geom}}^a) (m(^2)/g)</th>
<th>(n_m^b) (m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz 48.75(^c)</td>
<td>1.00</td>
<td>2.3\times10^{-3}</td>
<td>4.9\times10^{8}</td>
<td></td>
</tr>
<tr>
<td>Albite 10.00</td>
<td>0.125</td>
<td>1.8\times10^{-2}</td>
<td>5.1\times10^{10}</td>
<td></td>
</tr>
<tr>
<td>Microcline 13.50(^c)</td>
<td>0.125</td>
<td>1.9\times10^{-2}</td>
<td>6.9\times10^{10}</td>
<td></td>
</tr>
<tr>
<td>Oligoclase 6.00(^c)</td>
<td>0.125</td>
<td>1.8\times10^{-2}</td>
<td>3.1\times10^{10}</td>
<td></td>
</tr>
<tr>
<td>Calcite 3.75(^c)</td>
<td>0.500</td>
<td>4.4\times10^{-3}</td>
<td>3\times10^{8}</td>
<td></td>
</tr>
<tr>
<td>Smectite 2.25(^c)</td>
<td>0.001</td>
<td>2.23</td>
<td>2.3\times10^{16}</td>
<td></td>
</tr>
<tr>
<td>Illite 0.75(^c)</td>
<td>0.001</td>
<td>2.12</td>
<td>7.5\times10^{15}</td>
<td></td>
</tr>
<tr>
<td>Kaolinite 1.00</td>
<td>0.001</td>
<td>2.31</td>
<td>10^{16}</td>
<td></td>
</tr>
<tr>
<td>Chlorite 13.76(^d)</td>
<td>0.008</td>
<td>2.6\times10^{-1}</td>
<td>2.6\times10^{14}</td>
<td></td>
</tr>
<tr>
<td>Dolomite 1.00</td>
<td>0.5</td>
<td>4.2\times10^{-3}</td>
<td>8\times10^{7}</td>
<td></td>
</tr>
<tr>
<td>Ankerite 1.00</td>
<td>0.5</td>
<td>4.2\times10^{-3}</td>
<td>8\times10^{7}</td>
<td></td>
</tr>
<tr>
<td>Siderite 1.00</td>
<td>0.5</td>
<td>3.0\times10^{-3}</td>
<td>8\times10^{7}</td>
<td></td>
</tr>
<tr>
<td>Magnetite 1.00</td>
<td>0.1</td>
<td>1.2\times10^{-2}</td>
<td>10^{10}</td>
<td></td>
</tr>
<tr>
<td>Goethite 1.00</td>
<td>0.06</td>
<td>2.3\times10^{-2}</td>
<td>5.2\times10^{10}</td>
<td></td>
</tr>
<tr>
<td>SC CO(_2) 5.00(^c)</td>
<td>0.01</td>
<td>7.9\times10^{-1}</td>
<td>5\times10^{13}</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Geometric surface area per gram of mineral
\(^b\) Number of mineral grains per unit volume of porous medium
\(^c\) Initial volume fraction in sandstone
\(^d\) Initial volume fraction in shale

The average grain size varies with time. To initiate the appearance of a mineral which was not originally present in the system it was pre-seeded by a 1 ppm volume fraction. To use Equation 16 for mineral volume fractions less than 10\(^{-6}\) (i.e. to solve the problem of mineral \(m \) appearance/disappearance), Equation 16 was modified as

\[s_m = 6n_m^{1/3} \phi_m^{1-\text{SF}(\phi_m^*,\phi_m)} \phi_m^{2/3} \]

\((18) \)

where \(\text{SF}(\phi_m^*,\phi_m) \) refers to Heaviside step-function of \(\phi_m \) at \(\phi_m^* = 10^{-6} \). Step-function is defined by relation: at \(\phi_m \geq \phi_m^* \), \(\text{SF}(\phi_m^*,\phi_m) = 1 \); at \(\phi_m < \phi_m^* \), \(\text{SF}(\phi_m^*,\phi_m) = 0 \).
The system of partial differential equations (PDE), Equations 12 and 13, as formulated in the main text along with the initial and boundary conditions was solved by the Method of Lines in the program MK76. In MK76, the PDE system was discretized (Lebedeva et al., 2007) by means of spatial finite differences and integrated in time by the implicit method for differential/algebraic equations (DAE) using the kth-order backward differentiation formula (BDF) method. In that method k ranges from one to five to optimize the time stepsize and to maximize the accuracy of computations (Petzold, 1982; Brenan et al., 1995). The number of equidistant spatial nodes of discretization was set equal to 601.
3. SIMULATION OF CO₂ INDUCED REACTIVE PROCESS IN BASELINE SANDSTONE

3.1 SETUP OF THE REACTIVE DIFFUSION PROBLEM

The reactive diffusion process was investigated because it is the slowest of all transport processes. Thus, if the kinetics of mineral reactions are important during reactive diffusion, kinetics will also be important for a system with advective transport (for example, convection due to variable brine density). The general setup of the reactive diffusion model is represented in Figure 1. The content of water in the supercritical CO₂ (SC CO₂) phase was assumed to be negligible. Specifically, at 75°C and 30 MPa, the CO₂ fluid is calculated to contain ~0.6 mass % H₂O at equilibrium with the brine (Duan and Sun, 2003). The solubilities of minerals in this SC CO₂ phase are extremely low. Therefore, the transfer of H₂O, rock, and salt components through interface (A) was disregarded and only diffusion of CO₂ was allowed.

Figure 1: Schematic diagram of the one-dimensional reactive diffusion model. Upon initiation of the simulation, the sandstone contains a brine of composition shown in Table 2. A represents the interface between the CO₂ SC fluid and the brine, and is impermeable to salt. B represents the no-flow boundary. Models were run as described in text with different values for the distance between A and B (LAB). The system diagrammed here is a small piece of the entire plume-rock system as shown in Figure 2.

Although the buoyancy of SC CO₂ and its small viscosity will generate a highly dynamic response that includes convection, these are not included in the model. The focus instead is on
simulating reactive diffusion which must occur in every situation at certain boundaries as shown in Figure 2. The model, therefore, simulates an element common to all CO₂-injected systems and allows focus on the importance of the kinetics of fluid-rock interactions.

Figure 2: A schematic diagram of relative depth showing geometry of a CO₂ plume within a sandstone sandwiched between two shales. The overlying shale caprock is located at a depth of 0 in the diagram; the lower-lying shale lies at a depth of -100 m. The interface between the plume (grey) and the brine (white) within the sandstone forms a curved interface, as shown, relatively soon after injection. The rectangular box is the system of study, expanded in Figure 3: LAB is the distance from the underlying shale (depth = -100 m) to the CO₂ plume-brine interface. Figure redrawn following Figure 5.7 in Benson and Cook (2005).

In general, it is assumed that CO₂ will be injected into a horizontal layer of sandstone sandwiched between two layers of low-permeability shale (Benson and Cook, 2005). After injection, the supercritical CO₂ plume will be stabilized physically, forming a plume entirely within the sandstone. Computations show that under favorable conditions, such immobilization of SC CO₂ can occur within 25 a (year, 365 days) of CO₂ injection (Doughty, 2010). The immobilized SC CO₂ is mostly residually trapped, filling relatively disconnected clusters of pores. In principle, under these conditions the plume consists of a heterogeneous region comprised of pores containing the two immiscible phases, SC CO₂ and CO₂–saturated brine. The filling of the pores might have a complex geometry. For example, aqueous and CO₂ fluids will coexist within neighboring pores or even within the same pores in a homogeneous porous medium (Liu et al., 2010; Lu et al., 2009). The details and special features of this heterogeneous region with complex geometry were neglected in the model.

The plume is likely to be shaped somewhat like a funnel with its stem at the injection well within the sandstone reservoir (Benson and Cook, 2005; Lu et al., 2009; Dentz and Tartakovsky, 2009). The plume widens upward to its truncation at the upper caprock. Within the upper part of the
plume, the CO\textsubscript{2} diffuses into the shale caprock (Gaus et al., 2005), but this process is not modeled here. At the bottom of the plume, CO\textsubscript{2} diffuses into the brine-saturated sandstone as represented in Figure 4, a schematic which was redrawn after Figure 5.7 (Benson and Cook, 2005). Interface (A) in Figure 3 defines the sub-horizontal interface of the plume at time 0 between the supercritical CO\textsubscript{2} fluid and the aqueous brine in the sandstone. Interface A is positioned at some distance L_{AB} from the impermeable shale, located at subhorizontal interface B (Figure 3).

The reactive diffusion of CO\textsubscript{2} down into the brine will change brine density and promote convection (Ennis-King and Paterson, 2007). The onset of convection is defined by the Peclet number which describes the balance between diffusion and convection,

$$Pe = \frac{v_c L_{AB}}{D}$$

where v_c is Darcy velocity for convection, D is the effective diffusion coefficient through porous sandstone, $D = 6 \times 10^{-10}$ m2 s$^{-1}$, and L_{AB} is the vertical distance from the plume bottom to the lower shale layer (Figure 2). v_c is determined by

$$v_c = \frac{k_{sand} \Delta \rho g}{\eta_{brine}}$$

where k_{sand} is sandstone permeability ($10^{-15} - 10^{-13}$ m2), estimated as 10^{-14} m2; $\Delta \rho$ (kg m$^{-3}$) is the brine density increment, $\Delta \rho \approx 0.1$ kg m$^{-3}$, g is acceleration due to gravity, $g = 9.8$ m s$^{-2}$, and the brine viscosity, $\eta_{brine} = 5.2 \times 10^{-4}$ Pa s.

Using these data and $L_{AB} = 30$ m, from Equation 19 it is calculated that $Pe = 0.93 \approx 1$; and at $L_{AB} = 10$ m, $Pe = 0.31 < 1$. On the basis of this estimation, the lower part of the sandstone which is saturated by brine (see Figure 4) can be thought of as divided into three regions controlled by different transport mechanisms: diffusion, diffusion + convection (labeled in Figure 4 as the transition zone), and convection. In this paper the zone dominated by diffusion is modeled. Again, the rationale for the focus on diffusion is to be able to determine the importance of the kinetics of fluid-rock interactions. It is likely that reactions that are kinetically limited in the simulation are also kinetically limited in systems that have advective as well as diffusive transport.

3.2 Modeling Results Assuming Standard Kinetics

In discussing the results of the diffusion-reaction calculation, the solution for the problem in Figure 3 with $L_{AB} = 3$ m is first discussed. Interface A (Figure 3) was closed for all components except CO\textsubscript{2}. The concentration of CO\textsubscript{2} at the boundary was maintained at a constant dissolved CO\textsubscript{2,aq} value set close to the equilibrium value determined for the supercritical CO\textsubscript{2} phase at 75°C and 30 MPa ($m^{4}_{CO2,aq} = 0.65$ mole kg$^{-1}$). The lower sandstone–shale interface at B was modeled as a no-flow boundary for all species. The diffusion problem was solved for 348.15 K
and 30 MPa. The transient solutions were calculated over the interval from 0 to 25 ka at which time the system reached equilibrium.

Initially the pore fluid was assumed to be in chemical equilibrium with the sandstone mineral assemblage and was calculated to have the composition summarized in Table 6. For the 8-component system at the given P-T conditions, the baseline sandstone assemblage of 7 phases (six minerals + one brine), is thermodynamically invariant according to the Gibbs phase rule. Namely, there are 7 phases and 7 mineral components plus one additional component (Cl-) that does not enter any mineral phase. Its concentration was assumed to be externally determined: Cl- concentration was set to 2.146 mole kg⁻¹ (Table 6). The invariance of this sandstone assemblage means that the initial concentration of dissolved CO₂ is buffered at a small concentration, ~10⁻⁴ mole kg⁻¹, as summarized in Table 6.

Table 6: Baseline brine composition¹ based on average oil-field brine compositions

<table>
<thead>
<tr>
<th></th>
<th>Average Brine (molality) ²</th>
<th>Theoretical Brine (molality)³</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>7.81</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>2.146</td>
<td>2.146</td>
</tr>
<tr>
<td>Na⁺</td>
<td>1.620</td>
<td>1.712</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.258</td>
<td>0.217</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.012</td>
<td>1.1 x 10⁻³</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>-</td>
<td>9.9 x 10⁻⁸</td>
</tr>
<tr>
<td>SiO₂</td>
<td>-</td>
<td>3.0 x 10⁻⁴</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>0.0040</td>
<td>9.5 x 10⁻⁵</td>
</tr>
</tbody>
</table>

¹ The molalities are given as component molalities, i.e., as the sum over all species containing the component

² Composition is based on North American oil-field brines as summarized in the Supp Material, Table S1, where data were from Collins (1975)

³ This column shows the initial composition of aqueous brine in equilibrium with the mineral assemblage Qtz+Mc+Ill+Cc+Olg+Smct. The ionic strength of this solution is 2.41. This is the brine composition used for the baseline model.

At time zero, the supercritical CO₂ phase was emplaced at boundary A. The profiles of propagation of reacting CO₂,aq into the brine in the sandstone and the resultant pH values are shown in Figure 5 where depth down into the sandstone appears as horizontal distance. In the model with $L_{AB} = 3$ m, ~ 100 a are required for CO₂,aq to reach the underlying shale. In other words, 100 a is the time needed to attain 2/3 of the CO₂,aq value maintained constant at boundary A. (Note that 2/3 was chosen as an arbitrary value because any value could have been chosen such as 95%, 99%, etc.)
Figure 3: The calculated concentrations of CO$_2$ aq (top) and pH (bottom) plotted as a function of distance inside the sandstone layer at different times (years) as noted for the reactive diffusion model with $L_{AB} = 3$ m. Note that here, distance is the distance downward away from the buoyant CO$_2$ plume, toward the lower shale caprock (compare with Figures 1 and 2).

So far, the choice of the length of sandstone simulated, L_{AB} (see Figure 1), has not been discussed. By analogy with metamorphic systems (Balashov and Lebedeva, 1989), it is clear that a critical length, L'_{AB}, exists such that for values $L_{AB} > L'_{AB}$ (Figure 1), redistribution of CO$_2$ from the supercritical phase into the brine and mineral phases will proceed by formation of distinct mineral reaction fronts that approach the limit of local chemical equilibrium, LCE, for reactive diffusion. Here, LCE is the hypothetical case such that the reaction kinetics are fast and chemical equilibrium is everywhere achieved. Theoretically, if $L_{AB} \gg L'_{AB}$, LCE will be attained if diffusion is allowed to proceed for a long-enough period of time. The characteristic time needed to attain the maximum extent of CO$_2$ sequestration at equilibrium, τ, is a function of L_{AB} and D.

It can be shown that $\tau \propto \frac{L^2_{AB}}{D}$ (Balashov and Lebedeva, 1989). For time $> \tau$, the amount of CO$_2$ stored will not vary with the rate constants of mineral reactions. In contrast, for time $< \tau$, the total amount of CO$_2$ stored will vary with the rate constants for mineral reactions.
For example, the computations represented in Figure 6 show that for $L_{AB} \leq 3$ m, diffusion-driven redistribution of CO$_2$ from the plume into the sandstone + brine is controlled by the kinetics of mineral/fluid reactions until the final equilibrium mineral assemblage. Using the results of these computations in combination with data on kinetics and diffusion and the LCE solution for reactive diffusion, it has been shown in the Supplementary Material that $L_{AB}^* \approx 20$ m. Above this critical length, the redistribution (sequestration) of CO$_2$ into the sandstone will be slowed due to slow rates of diffusion. In contrast, the distribution of phases for all values of $L_{AB} \leq 20$ m are identical (Figure 6).

![Figure 4](image_url)

Figure 4: The calculated mineral composition plotted versus time for a) LAB = 3 m, b) LAB = 1 m. The composition was averaged across the entire layer of sandstone (i.e. across LAB in Figure 3). The figure documents that mineral evolution is the same for two small values of LAB, i.e., as long as LAB $< L_{AB}^*$, where this latter value is about 20 m (see text).

A pH gradient forms inside the sandstone only during the first years. This pH gradient is eliminated as the cations—K$^+$, Ca$^{++}$, and especially Na$^+$—are released due to feldspar dissolution and the brine is charge-balanced by formation of HCO$_3^-$. After 50 a, the pH of the brine is buffered primarily by H$_2$CO$_3$ + NaHCO$_3$ (Figure 3 bottom). The average mineral volume fractions for the 3-m layer are shown as a function of time in Figure 5a. On the left side of the figure the mineral assemblage, Mc + Olg + Cc + Smct + III + Qz, is not yet equilibrated with
brine + CO₂ and on the right side the assemblage, Mc + Ill + Qtz + Cc is entirely equilibrated with CO₂ + brine.

From a theoretical point of view, reactive diffusion into the sandstone is identical to a classic metamorphic system that is closed with respect to all components except CO₂ which diffuses in through boundary A (Figure 1). Using published terminology (Korzhinskii, 1936, 1970; Thompson, 1970), CO₂ can be considered a perfect mobile component. Given sufficient time, this system reaches a new equilibrium state where the chemical potential of CO₂ (\(\mu_{CO_2}^{S} \)) in the sandstone equals the chemical potential of CO₂ in the supercritical phase (\(\mu_{CO_2}^{V} \)) maintained at the interface A.

As shown later (Figure 6), CO₂ sequestration occurs throughout the reacting system as long as \(\mu_{CO_2}^{S} \) is changing (see Figure 3). Nonetheless, the sequestration (redistribution) of CO₂ at \(\sim 4 \) ka is very close to its maximum value. At this time, at a position 3 m from the plume, the CO₂ chemical potential in the sandstone is approximately equal to the value externally applied at interface A, \(\mu_{CO_2}^{V} \). After 4 ka, the sluggish reactive process continues in the sandstone under SC CO₂ buffered conditions until complete equilibrium is attained at \(\sim 25 \) ka. The duration of time from 4 to 25 ka is necessary for illite to completely replace kaolinite (Chermak and Rimstidt, 1990b).

After a short induction time (<50 a), concentration of CO₂,aq is significant across the entire simulation volume (Figure 3). After 1,000 a, very little change in this concentration is observed; however, as shown in Figure 5, the concentration of HCO₃⁻ increases significantly as albite dissolves to increase dissolved Na⁺. However, the pH does not change significantly during this latter alteration process because the system is strongly buffered: from the initial value \(\approx 7.2 \), pH decreases to 5 after 200 a, but increases again to 6 after that (Figure 5). The saturation indices, \(\log (Q/K_{eq}) \), for minerals also vary significantly over time (Figure 5, bottom). Here Q and \(K_{eq} \) are the ion activity product and equilibrium constant for each mineral dissolution reaction. Figure 5 (bottom panel) shows that calcite and microcline are always at or near chemical equilibrium because of the fast kinetics of calcite and the relatively low microcline solubility in comparison with Na feldspars. For the simulations, quartz is in equilibrium with the initial brine and with the final brine + CO₂ fluid. However, between \(\sim 50 \) and 5,000 a, the pore fluid is supersaturated with respect to quartz as shown in Figure 5.
Figure 5: Plot of average molalities of Na\(^+\), CO\(_2\)(aq) and HCO\(_3\)- versus time (top). Plot of average pH and -log \(m_{i,aq}\) versus time (middle). Here “pmi” refers to –\(\log(m)\). All simulations for \(L_{AB} = 3\) m. Average saturation indices, \(\log (Q/K_{eq})\), for minerals plotted versus time for the sandstone model with \(L_{AB} = 3\) m (bottom).
The remarkable feature of Figure 5 (bottom) (in conjunction with Figure 4) is that three minerals (smectite, albite and kaolinite) are dissolved close to LCE within the time spans 60–800, 200–3,500, and 3,000–20,000 a, respectively. Immediately after complete dissolution, the saturation indices of these minerals decrease precipitously. This feature means that the reactive system evolves through a series of steps, termed kinetic stationary states.

Observations from Figures 4 and 5 are summarized in Table 7. Reactive diffusion of CO$_2$$_{aq}$ dissolves oligoclase until dissolution is complete by ~100 a. As Ca is released from oligoclase, two other Ca-containing minerals—calcite and, especially, smectite, precipitate. The smectite precipitation is promoted by supersaturation due to silica release during oligoclase dissolution. After ~50 a, the precipitation of albite and kaolinite become significant; at that point, smectite begins to dissolve close to LCE. Smectite disappears by 800 a. After 4,000 a, illite begins to grow at the expense of kaolinite and microcline.

Table 7: Summary of mineral/fluid reactions1 due to CO$_2$ invasion into sandstone

<table>
<thead>
<tr>
<th>Reaction Progress</th>
<th>0–10 a</th>
<th>10–50 a</th>
<th>50–100 a</th>
<th>100–1,000 a</th>
<th>1,000–5,000 a</th>
<th>5,000–10,000 a</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.1</td>
<td>Mc↓</td>
<td>Mc↓</td>
<td>Mc↓</td>
<td>Mc↑</td>
<td></td>
<td>Mc↑</td>
</tr>
<tr>
<td></td>
<td>Cc↑</td>
<td>Ab↑</td>
<td>Kln↑</td>
<td>Ab↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1–0.9</td>
<td>Olg ↓</td>
<td>Smct ↑</td>
<td>Ab ↑</td>
<td>Smct ↓</td>
<td>Kln ↑ Smct ↓</td>
<td>Ill ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olg ↓</td>
<td></td>
<td>Olg ↓</td>
<td>Kln ↑</td>
<td>Kln ↑ Ab ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cc ↑</td>
<td></td>
<td></td>
<td>Mc ↓</td>
<td></td>
</tr>
<tr>
<td>> 0.9</td>
<td>Smct ↑</td>
<td></td>
<td></td>
<td>Cc ↑</td>
<td>Cc↑</td>
<td></td>
</tr>
</tbody>
</table>

1The symbols M \downarrow and M \uparrow correspond to mineral dissolution and precipitation, respectively.

With respect to mineral or solubility trapping of CO$_2$, the system is controlled most directly by the reactions of oligoclase, smectite, and albite. Specifically, trapping of CO$_2$ is determined by dissolution of oligoclase, by the replacement of smectite by calcite, and by the transformation of albite to kaolinite. The first two reactions control concentrations of Ca in solution (which controls mineral trapping) and the latter reaction controls the conversion of CO$_2$$_{aq}$ into HCO$_3$$_{aq}$ (solubility trapping). By ~3,500 a, the albite disappears and CO$_2$ mineral trapping reaches its maximum. Although mineral trapping of CO$_2$ stops by 1,000 a and HCO$_3$$_{aq}$ trapping essentially stops by 3,500 a, the very slow kinetics of kaolinite + microcline replacement by illite determines the rate of final equilibration to Mc+Ill+Cc+Qtz, which is achieved only by 25,000 a. During this process there is additional small HCO$_3$ trapping because of the growth in aqueous KHCO$_3$ concentration (Figure 6).
3.3 EVOLUTION OF CO₂ SEQUESTRATION

Carbon dioxide diffusion into the brine-saturated sandstone is essentially an acid-base titration: the acid is the H₂CO₃ formed as CO₂ gas dissolves in the aqueous fluid and the base is the rock itself. Therefore, during the reactive diffusion, CO₂ is stored by three mechanisms: 1) dissolution of CO₂ into aqueous brine (CO₂,aq); 2) hydration and deprotonation of CO₂ to form HCO₃⁻ (+ minor CO₃²⁻); and 3) precipitation of calcite. Mechanisms (1) and (2) comprise solubility trapping while mechanism (3) comprises mineral trapping. Furthermore, mechanism (1) is simply dissolution of the CO₂. In contrast, mechanism (2) is the acid-base titration of Na, Ca, K-silicates dissolving into water-CO₂ to form HCO₃⁻ + CO₃²⁻ ions that charge-balance the hard cations, Na, Ca, K. This solubility trapping is largely due to dissolution of feldspars, in particular, Na feldspars. Notably, although the details of these processes will depend upon the exact mineralogy of the sandstone reservoir, the overall trends noted here will be true for most systems.
The average concentrations of stored CO₂ in moles per m³ sandstone by the three different mechanisms were calculated for the model with $L_{AB} = 3$ m to yield what are called here the standard curves shown in Figure 6. These were computed with the standard set of kinetic constants of mineral dissolution/precipitation (Table 4). Figure 6 shows that CO₂ sequestration was complete to within 97% of the maximum value by 3,500 a. After 3,500 a, the main mechanism by which HCO₃⁻ forms, i.e., albite transformation to kaolinite + quartz, ceases:

$$2 \text{CO}_2 + 3\text{H}_2\text{O} + 2\text{Ab} \rightarrow 2\text{Na}^+ + 2\text{HCO}_3^- + \text{Kln} + 4\text{Qtz}$$

For $t > 3,500$, the main alteration reaction is the replacement of kaolinite by illite to form the equilibrium assemblage Qtz + Cc + Mc + Ill. During that last process, the CO₂ chemical potential inside the sandstone equilibrates to the chemical potential of CO₂ in the gas plume at the interface A. Thus, the last 3% of the total CO₂ is stored as HCO₃⁻ during the last stage of sandstone alteration as microcline dissolves to form aqueous KHCO₃. This last stage occurs under conditions of so-called “perfect mobile CO₂ behavior” (Korzhinskii, 1970).

For the baseline sandstone, the maximum amount of stored CO₂, $[\text{CO}_2]_{\text{max}}$, equals 784 mole per m³ of sandstone (Figure 6), or 34.5 kg CO₂ per sandstone m³. This quantity defines the absolute capacity of the saline baseline sandstone reservoir for CO₂ sequestration. This maximum is comprised of 21% CO₂ dissolved as CO₂,aq, 49% dissolved as HCO₃⁻, and 30% precipitated as calcite, i.e., 70% solubility trapping and 30% mineral trapping. The extent of sequestration as HCO₃⁻ is mainly determined by the amount of Na⁺ in the initial sandstone in the soluble Na-containing mineral (here, oligoclase); in contrast, the extent of trapping in calcite is determined by the initial content of soluble Ca-silicates (here, oligoclase and smectite). These final solubility: mineral trapping ratios do not depend upon the reactive transport model, but rather can be readily calculated from the initial sandstone composition if the initial and final equilibrium states of the thermodynamic system are calculated. The reactive transport model determines the paths of evolution between initial and final states.

The efficiency of CO₂ redistribution from the CO₂ plume into the saline reservoir can be defined as the ratio of $[\text{CO}_2]_{\text{max}}$ to the mass of SC CO₂ in reservoir pores at full saturation (= 1) by SC CO₂. Here $[\text{CO}_2]_{\text{max}}$ equals 34.5 kg m⁻³. The density of SC CO₂, $\rho_{\text{CO}_2}^{\text{sc}} = 760$ kg m⁻³, at 75°C and 30 MPa, means that the maximum mass of SC CO₂ per m³ is $[\text{CO}_2]_{\text{tot}}^{\text{sc}} = \rho_{\text{CO}_2}^{\text{sc}} \phi = 190$ kg m⁻³ for the baseline sandstone with porosity $\phi = 0.25$. The baseline sandstone efficiency ratio is, therefore, $[\text{CO}_2]_{\text{max}} / [\text{CO}_2]_{\text{tot}}^{\text{sc}} = 0.18$.

3.4 KINETIC SENSITIVITY ANALYSIS

The kinetic sensitivity analysis is divided into two parts. In the first part the focus is on the impact of kinetic rate constants on stored CO₂ (in units of moles CO₂/ m³ of brine-saturated sandstone). The second part concentrates on the time sequence of important controlling minerals, i.e., rates of appearance (albite) and disappearance (oligoclase, smectite, albite). The minerals appear and disappear to define mineral “waves” that either propagate from the plume boundary to the shale boundary or the reverse. To determine the sensitivity of the models to the choice of rate constants for smectite, oligoclase and albite, sensitivity tests were run for $L_{AB} = 3$ m for a
sandstone at 75°C and 30 MPa. As discussed above, reactive-diffusive CO₂ sequestration in this model does not depend on L_{AB} for $L_{AB} < L_{AB}^* \approx 20$ m.

By summing the three curves in Figure 8, the total CO₂ stored in the brine portion of the reservoir is calculated as a function of time (bottom panel in Figure 8). Different choices of mineral rate constants were explored to determine how they change the total CO₂ stored (Figure 9). The results are reported by summarizing the sensitivity factor, $[CO_2]^{var}/[CO_2]^{std}$, where $[CO_2]^{std}$ is the mass of CO₂ per m³ of reservoir stored in the standard model (Table 4) and $[CO_2]^{var}$ is the same mass calculated with variations in the rate constants. The variations in kinetic constants sometimes do and sometimes do not change the path; of course, these variations never change the final value (Figure 7).

Figure 7: The effect of changes in the rate constants for oligoclase, albite and smectite on the relative total CO₂ stored in the sandstone (sensitivity factor, $[CO_2]^{var}/[CO_2]^{std}$, see details in text) plotted versus time. In the Ab and Smct cases, the sequestration is most sensitive to a decrease in the rate constants rather than an increase. This is because a decrease moves the system into the regime of kinetic limitation whereas an increase causes the system to approach equilibrium. Note that the ordinate is scaled differently in the panels; for example, in this figure, the sensitivity factor for changing the oligoclase rate constant is the largest.
For example, for a 10 times increase in the smectite rate constant, the total sequestration curve does not change at all (compare the dashed and dotted lines in Figure 7, bottom). In contrast, a 100 times decrease in smectite rate constant (dash/dotted line) leads to a decrease in the total CO₂ stored over the interval from 10–150 a by a sensitivity factor of 0.85, to an increase in CO₂ stored during 150–1,000 a by a sensitivity factor of 1.2, and, finally, to a decrease in sequestration from 1,000–4,000 a by a factor of 0.9. The maximum deviation in stored CO₂ compared to the standard curve equals ~ 80 mole m⁻³ (Figures 6–7). Figure 7 also shows that changes in the rate constants for oligoclase and albite affect CO₂ storage more than that of smectite, especially in the interval 10–200 a.

The extent of CO₂ stored by the different mechanisms also changes with time when the rate constants for mineral reactions are changed (Figures 8–10). A 10 times decrease in the oligoclase rate constant increases the CO₂,aq stored from 2–80 a (Figure 8). In contrast, a 10 times increase in the oligoclase rate constant leads to a decrease in stored CO₂,aq in the 20–100 a interval (Figure 8). If the oligoclase rate constant is 10x faster, more of the CO₂ is precipitated as calcite from 10–100 a. These individual effects are larger than the summed total effect (Figure 7) because of compensation effects (Figure 8).

![Figure 8: The effect of the oligoclase rate constant on CO₂ sequestration for the three mechanisms. The sequestration is most sensitive to a 10 times decrease in the rate constant after about 10 a.](image)

These observed compensation effects are kinetic in nature and can be explained qualitatively. For example, consider a 10 times increase in the oligoclase (Olg) kinetic constant. In the time interval 0–10 a, it leads to higher aqueous concentrations of Na⁺ and silica due to oligoclase
dissolution; the higher \([\text{Na}^+]\) leads to an increase of \([\text{HCO}_3^-]\), and higher silica promotes more intensive smectite precipitation which decreases calcite precipitation (Figure 10). Note that here and throughout, \([x]\) refers to concentration of species \(x\) in solution. In the time interval 10–60 a, albite precipitation decreases \([\text{HCO}_3^-]\) and aqueous silica, which in turn decreases smectite precipitation. This then in turn promotes an increase in calcite precipitation (Figure 8).

Figure 9: The effect of changes in the albite rate constant on CO₂ storage over time by the three different mechanisms. Storage is more sensitive to a 10 times decrease in the rate constant than an increase, starting from about 20 years on.

In contrast to oligoclase, a 10 times increase in the albite rate constant decreases the total CO₂ stored from 30–110 a (Figure 7), but the effect is not large. The effects of changes in the albite rate constant on CO₂ storage by the three mechanisms are broken out in Figure 9. Again, these independent effects are bigger than the total summed effect (Figure 7), because of strong compensation (Figure 9). For example, in the time interval 20–100 a, a 10 times decrease in the Ab kinetic constant leads to higher aqueous concentrations of \(\text{Na}^+\) and silica; the higher \([\text{Na}^+]\) leads to an increase of \([\text{HCO}_3^-]\), and higher silica promotes more intensive smectite precipitation which decreases calcite precipitation (Figure 9).
A decrease in the smectite kinetic constant significantly affects sequestration as HCO_3^- and as calcite (mineral trapping, Figure 10). However, these individual effects are each larger than the total summed effect (Figure 7) because of kinetic compensation (Figure 10). In fact, a slower smectite rate constant shifts the sequestration to calcite precipitation around the 100 a mark, but lowers the amount of calcite precipitated at 1,000 a.

The sensitivity analysis shows that CO$_2$ sequestration is sensitive to the mineral rate constants, decreasing in sensitivity in the following order: oligoclase > albite > smectite. Furthermore, the effect of the smectite rate constant is only significant if the rate constant decreases, whereas for the feldspars, either an increase or a decrease impacts the sequestration. In brief, the importance of the rate constant for albite is related to solubility trapping by formation of HCO_3^-aq (i.e., albite dissolution releases aqueous Na) while the importance of the rate constant for smectite is related to mineral trapping by formation of calcite (i.e. smectite dissolution releases aqueous Ca). The rate constant for oligoclase is important for both solubility and mineral trapping because oligoclase releases both Na and Ca to solution.
3.5 TIME SEQUENCES OF MINERAL REACTION: SENSITIVITY TO RATE CONSTANTS

The sensitivity with respect to kinetics can also be explored by looking at mineral concentration profiles (Figures 11–12) for different times. At higher values of the smectite kinetic constant and for time < 80 a (Figure 11), smectite precipitates as an intensive wave that is maximized at x = 0. Precipitation reaches the maximum concentration at ~ 80 a. After 80 a, the smectite wave propagates backward as smectite dissolves. A 100 times decrease in the smectite kinetic constant suppresses this effect. In contrast to smectite, the oligoclase profiles (Figure 11) show only a dissolution wave that propagates in the forward direction.

![Figure 11: Plots of oligoclase (top) and smectite (bottom) volume fractions versus distance inside the 3-m thick sandstone layer for different values of the oligoclase and smectite kinetic constant. The numbers mark the profile times in years.](image)

Smectite precipitation is promoted by the high concentration of dissolved silica that is caused largely by oligoclase dissolution, whereas smectite dissolution is conditioned by the decrease in alumina concentration caused by albite precipitation. A similar coupling with respect to dissolution/precipitation of smectite and feldspars through dissolved silica concentrations was observed in computations of mineral profiles in soils during continental weathering (Goddéris et al., 2010).
The albite profiles plotted in Figure 12 show that the albite precipitation waves propagate backward while the dissolution waves propagate forward. Of course, these directions are actually upward and downward respectively within the context of the actual system (Figure 1 and 2). In general, the gradient of mineral concentrations reflects the gradient of the chemical potential of CO₂ through the sandstone layer.

3.6 MINERAL REACTION NETWORKS

The reactive interaction among minerals is summarized in Figure 13. For example, an increase in the oligoclase kinetic constant is coupled positively to smectite and albite: as the reaction rate of oligoclase increases, the maximum concentration of both smectite and albite also increase. (Likewise, a decrease in the oligoclase kinetic constant decreases the maximum concentrations of smectite and albite.)

In contrast, an increase in the albite kinetic constant is coupled negatively to smectite: as the albite rate constant increases, the maximum predicted concentration of smectite decreases. Likewise, a decrease in the albite kinetic constant increases the maximum concentration of
smectite. Furthermore, smectite and albite demonstrate the effect of a positive kinetic auto-
response; an increase in the value of their kinetic constants leads to an increase in their maximum
predicted concentrations (Figure 13b).

![Diagram showing mineral interactions during CO2 sequestration]

Figure 13: Interaction among minerals during CO2 sequestration. The arrows show the
direction of kinetic coupling, where (+) corresponds to positive kinetic coupling and (-) refers
to negative kinetic coupling. a) The coupling between different minerals; b) a positive auto-
response to smectite and albite kinetic constants is also observed.

The observed kinetic coupling among minerals is explained by the non-linearity of the kinetic
law, i.e., Equation 15. The rate of mineral reaction is proportional to the product of the kinetic
constant times the deviation from equilibrium. This deviation from equilibrium is a non-linear
function of the dissolved concentrations of mineral components. These concentrations change in
the complex reactive system when the kinetic constants are varied. The aqueous concentrations
serve to couple responses among the various minerals.
4. SIMULATION OF REACTION AND DIFFUSION AT THE RESERVOIR (SANDSTONE)/CAPROCK (SHALE) INTERFACE DURING CO2 STORAGE

4.1 SETUP OF THE REACTIVE PROBLEM

To initiate the simulation, the model was parameterized for the interface of sandstone containing supercritical (SC) CO2 (5% of rock volume) and brine (20% of rock volume) with shale containing only brine (5% of rock volume).

In general, it is assumed that for CO2 sequestration, the gas will be injected into a subhorizontal layer of permeable rock (e.g., sandstone) overlain by a low-permeability rock (e.g., shale) (Benson and Cook, 2005). After injection, the supercritical CO2 plume will first be stabilized physically, forming a plume entirely within the sandstone. Computations show that under favorable conditions, immobilization of SC CO2 can occur within 25 years of CO2 injection (Doughty, 2010), after which time the immobilized SC CO2 is mostly trapped residually. In this case the CO2 fills relatively disconnected clusters of pores. The plume in this case likely consists of a heterogeneous region of pores with the two immiscible phases, SC CO2 and CO2–saturated brine. The filling of the pores might have a complex geometry. For example, aqueous and CO2 fluids will coexist within neighboring pores or even within the same pores in a homogeneous porous medium (Liu et al., 2010; Lu et al., 2009). The estimation of residual SC CO2 phase as 5% of sandstone volume with a sandstone porosity of 25% would correspond to a residual CO2 saturation of 20%. This is a reasonable value given that most estimations have been equal to or less than 30% (Szulczewski et al., 2012).
Predictive Modeling of CO2 Sequestration and Storage in Deep Saline Sandstone Reservoirs

Figure 14: Setup of the reactive diffusion model for simulation of the contact between the reservoir (sandstone) and the caprock (shale). The schematic shows the bottom boundary (B), interface boundary (I), and upper boundary (A). Five percent of the bulk sandstone volume is initially filled by residual SC CO2 phase. It makes the initial sandstone porosity equal to 20%.

Within the upper part of the plume, the CO2 diffuses into the shale caprock (Gaus et al., 2005). The general setup of the reactive diffusion model is represented in Figure 1. The content of water in the supercritical CO2 (SC CO2) phase was assumed to be negligible as assumed in the first part of this work. In these calculations it was set to zero.

The model geometry was represented by two horizontal rock layers, a sandstone layer which is 2.5-m thick and a shale layer which is 5-m thick (Figure 14). The upper boundary (A) was modeled as a no-flux boundary for all species. The bottom boundary (B) was closed for all components except CO2,aq and O2,aq. At boundary (B) the concentrations of CO2,aq and O2,aq were maintained constant. The boundary concentration (molality) of CO2,aq was set close to the value calculated after equilibration with the initial brine for the SC CO2 phase at 75°C and 30 MPa ($m^\text{ACO2,aq} = 0.7434$ mole kg$^{-1}$). The molality of O2,aq at the constant boundary was set equal to 7.427×10^{-9} mole kg$^{-1}$. This value is equivalent to 0.24 ppb dissolved O2 and it corresponds to the low end of standard analytical determinations. This value was chosen because a small amount of O2 can be mixed with CO2 during injection. However, the numerical tests show that the simulations do not change for the case in which boundary (B) is maintained closed with respect to O2,aq.

4.2 RESULTS FOR STANDARD KINETICS AND STANDARD SHALE TRANSPORT PROPERTIES

Initially the sandstone and shale pore fluids were calculated to be at chemical equilibrium (Table 1) with the sandstone and shale mineral assemblages (Table 2) as summarized in Table 8.
Table 8: Initial equilibrium speciation of sandstone and shale pore brines

<table>
<thead>
<tr>
<th>Chemical Entity</th>
<th>Sandstone</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Molality, mol kg⁻¹</td>
<td></td>
</tr>
<tr>
<td>H⁺</td>
<td>2.57×10⁻⁸</td>
<td>3.78×10⁻⁷</td>
</tr>
<tr>
<td>O₂⁻</td>
<td>6.63×10⁻⁶³</td>
<td>8.20×10⁻⁶¹</td>
</tr>
<tr>
<td>Na⁺</td>
<td>1.472</td>
<td>1.462</td>
</tr>
<tr>
<td>K⁺</td>
<td>1.02×10⁻³</td>
<td>1.5×10⁻²</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>6.06×10⁻²</td>
<td>6.06×10⁻²</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>1.87×10⁻¹</td>
<td>1.86×10⁻¹</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>1.59×10⁻¹¹</td>
<td>3.64×10⁻¹⁴</td>
</tr>
<tr>
<td>Al(OH)₃⁻</td>
<td>3.48×10⁻¹⁰</td>
<td>3.48×10⁻¹⁰</td>
</tr>
<tr>
<td>SiO₂⁻</td>
<td>2.75×10⁻⁴</td>
<td>2.75×10⁻⁴</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>1.59×10⁻³</td>
<td>1.6×10⁻³</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>1.968</td>
<td>1.969</td>
</tr>
<tr>
<td>CO₂⁻</td>
<td>7.5×10⁻⁷</td>
<td>1.64×10⁻⁴</td>
</tr>
<tr>
<td>OH⁻</td>
<td>3.04×10⁻⁴</td>
<td>2.07×10⁻⁶</td>
</tr>
<tr>
<td>H₂⁻</td>
<td>5.14×10⁻⁹</td>
<td>4.63×10⁻¹⁰</td>
</tr>
<tr>
<td>H₂SiO₄⁻</td>
<td>2.5×10⁻⁵</td>
<td>1.7×10⁻⁶</td>
</tr>
<tr>
<td>NaCl⁻</td>
<td>1.33×10⁻¹</td>
<td>1.32×10⁻¹</td>
</tr>
<tr>
<td>KCl⁻</td>
<td>3.09×10⁻⁵</td>
<td>4.55×10⁻⁴</td>
</tr>
<tr>
<td>MgCl⁺</td>
<td>1.75×10⁻³</td>
<td>1.75×10⁻³</td>
</tr>
<tr>
<td>CaCl⁺</td>
<td>2.42×10⁻³</td>
<td>2.4×10⁻³</td>
</tr>
<tr>
<td>CaCl₂⁻</td>
<td>9.8×10⁻⁴</td>
<td>9.7×10⁻⁴</td>
</tr>
<tr>
<td>FeCl₂⁻</td>
<td>1.92×10⁻¹⁵</td>
<td>4.39×10⁻¹⁸</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>2.43×10⁻²⁶</td>
<td>2.72×10⁻²⁷</td>
</tr>
<tr>
<td>NaOH⁺</td>
<td>1.4×10⁻⁶</td>
<td>9.46×10⁻⁸</td>
</tr>
<tr>
<td>KOH⁺</td>
<td>1.84×10⁻⁹</td>
<td>1.84×10⁻⁹</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>2.79×10⁻¹⁶</td>
<td>8.89×10⁻¹³</td>
</tr>
<tr>
<td>Al(OH)²⁺</td>
<td>4.5×10⁻¹⁵</td>
<td>9.75×10⁻¹³</td>
</tr>
<tr>
<td>Al(OH)₃⁺</td>
<td>6.37×10⁻¹³</td>
<td>9.38×10⁻¹²</td>
</tr>
<tr>
<td>Al(OH)₄⁻</td>
<td>1.04×10⁻⁷</td>
<td>704×10⁻⁹</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>9.3×10⁻⁵</td>
<td>1.38×10⁻³</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>6.8×10⁻⁶</td>
<td>6.85×10⁻⁶</td>
</tr>
<tr>
<td>HSO₄⁻</td>
<td>1.11×10⁻⁹</td>
<td>1.65×10⁻⁸</td>
</tr>
<tr>
<td>NaHSO₄⁺</td>
<td>8.74×10⁻¹⁰</td>
<td>1.29×10⁻⁸</td>
</tr>
</tbody>
</table>
Table 8: Initial equilibrium speciation of sandstone and shale pore brines (continued)

<table>
<thead>
<tr>
<th>Chemical Entity</th>
<th>Sandstone</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Molality, mol kgw(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Na(_2)SO(_4)</td>
<td>2.66×10(^{-3})</td>
<td>2.64×10(^{-3})</td>
</tr>
<tr>
<td>NaSO(_4) (^{-})</td>
<td>1.15×10(^{-3})</td>
<td>1.15×10(^{-3})</td>
</tr>
<tr>
<td>K(_2)SO(_4)</td>
<td>7.26×10(^{-12})</td>
<td>1.58×10(^{-9})</td>
</tr>
<tr>
<td>KSO(_4) (^{-})</td>
<td>8.31×10(^{-7})</td>
<td>1.23×10(^{-5})</td>
</tr>
<tr>
<td>pH</td>
<td>7.84</td>
<td>6.67</td>
</tr>
<tr>
<td>Eh (V)</td>
<td>-0.372</td>
<td>-0.255</td>
</tr>
<tr>
<td>V(^w) (dm(^3) kgw(^{-1}))</td>
<td>1.018</td>
<td>1.018</td>
</tr>
</tbody>
</table>

Profiles of the concentrations of CO\(_2\),\(_{aq}\), pH, and Eh in the pore brine are shown in Figure 17 after 10, 100, 1,000, and 5,000 years. Approximately 150 a are required for CO\(_2\),\(_{aq}\) to reach the upper boundary of the shale (labeled A on Figure 14).
Figure 15: The profiles of distributions in vertical dimension through sandstone and shale for dissolved in brine CO$_2$ aq/mol kg$^{-1}$ (left), pH (middle), and Eh/ V (right) at different times 10, 100, 1,000, and 5,000 years.

The mineralogy of the sandstone after alteration is very uniform. Therefore, the evolution in sandstone mineralogy is represented by changes in mineral abundances averaged across the entire sandstone unit. In contrast, the reaction process in shale varies significantly with distance from the boundary, with most alteration occurring within 1 m of the ss/sh contact. The extent of reaction is largest within a thin shale sub-layer at the ss/sh interface. The average mineral concentrations for these defined system sub-layers are plotted in Figure 16 and 17.
Figure 16: The evolution of the average mineral volume fractions in the shale at the ss/sh interface (top), in the shale in the 0–1 m sub-layer defined from the interface into the shale (middle), and in sandstone for the integral 0–2.5 m layer of sandstone (bottom).
Figure 17: Average saturation indices, log(Q/K_{eq}), for minerals in shale at the ss/sh interface (top), in the shale for the 0–1 m sub-layer from the interface inward the shale (middle), and in sandstone for the integral 0–2.5 m layer of sandstone (bottom) plotted versus time.

The variations in average mineral volume fractions within the 2.5-m thick sandstone layer (bottom), within the 1-m thick shale sub-layer (middle) integrated from the ss/sh boundary inward shale, and for the 0.0125-m thick shale sub-layer at the ss/sh interface (top) are shown in Figure 16. The reaction is focused in a narrow zone at the ss/sh interface.

The time evolution of the average mineral saturation indices for the defined above three sub-layers of the modeled system are shown in Figure 17. The top (the thin ss/sh interface) and bottom figures (ss layer) have many similarities because the shale sub-layer (top) lies directly adjacent to the sandstone (bottom). In both cases the kaolinite and illite saturation curves show an inversion point—i.e. kaolinite precipitation switches to dissolution and illite dissolution...
switches to precipitation—at ~ 2,000 years. Before this point the pore brine is supersaturated in kaolinite and undersaturated in illite. After this point the brine is supersaturated by illite and undersaturated by kaolinite. This coupled behavior for Kln/Ill correlates with the decrease in quartz supersaturation (Figure 17, top and bottom) and the increase in potassium activity with time.

An important feature of the pore brine in the shale is the behavior of ankerite. In contrast to calcite and dolomite which are always at local equilibrium with pore brine, ankerite is strongly undersaturated during the first 600 years (Figure 17, top and middle), and then is close to local equilibrium until 2,000 years, and then is supersaturated during the next 2,000–3,500 years (Figures 19 and 20, top and middle). Precipitation of ankerite eventually completely seals the porosity at the ss/sh interface (7,416 years).

CO2 is trapped in the sandstone by both mineral and solubility trapping. The system is controlled most directly by the reactions of oligoclase, smectite, and albite. Specifically, trapping of CO2 is determined by dissolution of oligoclase and release of Ca, the replacement of smectite by calcite and dolomite, and by the transformation of albite to kaolinite. The first two reactions control concentrations of Ca in solution (which controls mineral trapping by controlling the solubility index of calcite) and the latter reaction controls the conversion of CO2,aq into HCO3− (solubility trapping). By ~ 2,000 years, albite disappears (Figure 16, bottom) and CO2 solubility trapping reaches its maximum. In sandstone, although mineral trapping of CO2 stops by 1,000 years and HCO3− solubility trapping essentially stops by 2,000 years, the very slow kinetics of kaolinite + microcline replacement by illite determines the rate of final equilibration to the assemblage, Mc+Ill+Cc+Dol+Qtz.
Different reactions take place in the shale layer. The average concentrations of CO$_2$ (mol per m3) accumulated in the 0–5 m shale layer are plotted versus time in Figure 19 (top). The solubility trapping of CO$_2$ in the shale as CO$_{2,aq}$, HCO$_3^-$ and, CO$_3^{2-}$, is small in comparison to the sandstone because of the small porosity (Figure 19, top). Up to 3,500 years, the CO$_2$ that is trapped in the shale as a precipitate is mostly as dolomite. From 3,500 years to 7,416 years, intensive ankerite and dolomite precipitation is accompanied by calcite dissolution (Figure 19, top). The total CO$_2$
trapped in shale up until the termination time when the shale porosity is sealed at the ss/sh interface, is about two times less than the amount stored in the sandstone unit up to that time (Figure 19, bottom). Under the assumption that the whole sandstone layer is 100 m in thickness, the CO₂ trapped in the shale caprock would correspond to 1.3% of CO₂ stored in the sandstone reservoir.

4.3 REACTIVE ZONE IN SHALE

It is clear from Figure 16 that the reactions in shale seal the porosity at the ss/sh interface very close to the ss/sh contact. This reactive process happens because of the contrast in the sandstone and shale mineralogies, and especially because of the relatively high abundances of oligoclase and smectite in sandstone, and the relatively high chlorite content (> 5%) in the shale. Porosity closure has often been noted at the interface of two rocks with mineralogical contrast during bimetasomatism (Zaraïsky et al., 1986, 1989) and has been investigated previously (Balashov et al., 1991; Lichtner et al., 1998; Steefel and Lichtner, 1994).

For this problem, the important overall mineral-fluid reactions for sandstone and shale are summarized below. In sandstone there are three important acid-base reactions:

- Oligoclase dissolution

 \[
 \text{Olg} + 1.2 \text{CO}_2\text{aq} + 2.4 \text{H}_2\text{O} \rightarrow \]
 \[
 0.2 \text{Ca}^{2+} + 0.8 \text{Na}^+ + 1.2 \text{Al(OH)}_3\text{aq} + 2.8 \text{SiO}_2\text{aq} + 1.2 \text{HCO}_3^- \]

- Albite precipitation

 \[
 \text{Na}^+ + \text{Al(OH)}_3\text{aq} + 3 \text{SiO}_2\text{aq} + \text{HCO}_3^- \rightarrow \text{Ab} + \text{H}_2\text{O} + \text{CO}_2\text{aq} \]

- Albite dissolution to form kaolinite

 \[
 \text{Ab} + \text{CO}_2\text{aq} + 1.5 \text{H}_2\text{O} \rightarrow \text{Na}^+ + 0.5 \text{Kln} + 2 \text{SiO}_2\text{aq} + \text{HCO}_3^- \]

The important reactions that occur in both the sandstone and shale are as follows:

- Microcline dissolution

 \[
 \text{Mc} + \text{CO}_2\text{aq} + \text{H}_2\text{O} \rightarrow \text{K}^+ + \text{Al(OH)}_3\text{aq} + 3 \text{SiO}_2\text{aq} + \text{HCO}_3^- \]

- Kaolinite replacement by illite and vice versa

 \[
 3 \text{Kln} + 2 \text{K}^+ \rightarrow 2 \text{Ill} + 3 \text{H}_2\text{O} + 2 \text{H}^+ \]

The main reaction in the shale is:
carbonation of chlorite and calcite dissolution

\[\text{Chl} + 4.5 \text{Ca}^+ + 0.38 \text{SiO}_2^{aq} + 0.96 \text{K}^+ + 0.96 \text{HCO}_3^- + 3.54 \text{CO}_2^{aq} \rightarrow \]

\[0.96 \text{Ill} + 3 \text{Ank} + 1.5 \text{Dol} + 0.12 \text{Gt} + 3.46 \text{H}_2\text{O} \]

(27)

The onset of the last reaction at 3,600 years marks the beginning of formation of a reactive zone in the shale at the ss/sh interface. The spatial distributions of concentrations of Al(OH)_3^{aq}, Mg^{++}, Fe^{++} and Ca^{++} are represented as a function of time in Figure 19. After 3,500 years, Reaction 27 has not yet started and the sandstone brine still has greater concentrations of Al(OH)_3^{aq}, Mg^{++} and Ca^{++} than the shale, but the Fe^{++} molality is greater in the shale brine. At this time, the shale brine at the ss/sh interface is supersaturated with respect to ankerite (Figure 16b, top and middle).

Figure 19: Plot of four primary aqueous species molalities (Al(OH)_3, Mg^{++}, Fe^{++}, Ca^{++}) versus vertical space coordinate for times 3,500, 3,750, 4,000, 5,000, and 5,500 a.
The volume change during Reaction 27 is positive and equal to 51.365 cm³ per mole of Chl. However, this positive change can explain only 1.53% of the porosity decrease (initial 5% shale porosity) under the assumption that all the initial calcite in the shale (4.93 vol. %) reacts according to Reaction 27. Additional transport of Ca and Mg into the reactive zone of the shale is needed to explain the full porosity closure of the shale at the ss/sh interface (Figure 18).

Figure 19 shows counter diffusion occurring at the contact of the two rocks due to the different mineralogies. Reaction 27 is initiated by ankerite precipitation that started at a point 0.75 m in the shale inboard from the ss/sh interface (i.e., at vertical space coordinate 3.25 m, Figure 19). At 3,750 years, the reaction takes place within the interval 3–3.5 m and is marked by increasing Al(OH)₃,aq and decreasing Fe⁺⁺⁺ concentrations (Figure 19). In this interval, ankerite is in local equilibrium with pore brine. The ankerite precipitation affects the spatial distributions of concentrations of Mg⁺⁺ and Fe⁺⁺ in a similar way. This is difficult to see in Figure 20 because the concentration of Mg⁺⁺ is 1,000 times that of Fe⁺⁺. The rate of Reaction 27 is controlled by the kinetics of illite precipitation, and the transport of the reactive species in the brine is set by the reaction kinetics. This kinetic limitation is documented in Figure 18 for the case of Mg⁺⁺ and Ca⁺⁺ as a steepening of the concentration gradients in the interval between 3–3.5 m (Figure 19).
Figure 20: Mineral precipitation (ankerite, dolomite) and dissolution (chlorite, calcite) in the shale reactive zone between 3,500 and 7,000 years.
Figure 21: Mineral precipitation (illite, goethite) and dissolution (kaolinite, microcline) in the shale reactive zone and in the sandstone between 3,500 and 7,000 years.

The spatial distributions of minerals in the reactive zone are plotted as a function of time in Figures 20 and 21. From 4,000 years on, ankerite precipitates at the ss/sh interface on the shale side (Figure 20). This precipitation correlates with dolomite precipitation as well as chlorite and calcite dissolution (Figure 20), microcline dissolution and illite and goethite precipitation (Figure 21). The whole process proceeds after the Kln/Ill inversion at 2,000 years (Figure 21). Throughout, calcite, ankerite, dolomite, chlorite and goethite are all at local chemical equilibrium with brine, and microcline is very close to local equilibrium (Figure 17, 20, 21). Thus, the most important control on reaction progress is the kinetics of illite precipitation. The overall mineral reaction for the shale reactive zone can be expressed as the sum of Reactions 25 and 27:
The delay in onset of Reaction 27 is related to the delay in ankerite precipitation from the supersaturated fluid. This latter delay not only has a numerical basis in the model, but also is also related to the time dependence of the ankerite saturation index (Figure 16b, top and middle). Initially, ankerite is not present in the modelled system; however, as the system evolves it precipitates. To model minerals such as ankerite that precipitate but are not present at first, the mineral must be included in the initial system at a nominal concentration (here, 1 ppm in volume fraction units). According to Equation 18, the mineral specific surface area is calculated from the mineral volume fraction where the power changes from 2/3 to 5/3 for mineral volume fractions less than 1 ppm. In other words, the concentration of mineral grains at very small volume fractions is dependent on the mineral volume fraction. By using this algorithm for mineral appearance/disappearance, there was no delay in mineral precipitation for albite, kaolinite, dolomite, and goethite. The ankerite delay occurs because of its long period of strong undersaturation (600 years, Figure 19). During this period of undersaturation, its volume fraction drops well below 1 ppm, and a long time is required to reach the threshold 1 ppm fraction. Ankerite precipitation in the shale therefore begins at some distance from the ss/sh contact at a location where the threshold is reached first.

Although the model parameters of this mechanism are somewhat artificial, it makes physical sense that the ease of mineral precipitation depends on the initial concentration of a mineral (Steefel and VanCappellen, 1990; Lüttge et al., 2013). Second, ankerite formation in sedimentary rocks in some cases is delayed (Na et al., 2011), or reflects difficulty in nucleation (Milliken, 2002; Adabi and Rao, 2003). In some cases, dolomite may act as a precursor mineral (Ferry et al., 2009). Likewise, modeling here shows that dolomite precipitation takes place and always accompanies ankerite precipitation (Figure 21).

The bimodal ankerite precipitation resembles Liesegang banding (Lebedeva et al., 2004). For example, at 5,000 years and 5,500 years (Figure 22), two ankerite bands are predicted near and far from the ss/sh interface.

4.4 VARIATION OF THE TRANSPORT PROPERTIES OF THE SHALE POROUS MEDIUM

Rock porosity, effective rock diffusivity and permeability are important physical factors determining CO$_2$ storage. These parameters are reservoir-specific and can vary significantly within a reservoir. Fick’s first law for diffusion through porous media for one dimension is

$$ j = -F_{inv} D_{aq} \frac{\partial c}{\partial x} \tag{29} $$

where j is diffusion flux per 1 m2 of rock cross section in units [mole m$^{-2}$s$^{-1}$], D_{aq} - diffusion coefficient in pore solution [m2s$^{-1}$]. The geometrical effects of pore connectivity, effective pore cross section, and pore tortuosity are generally modeled using the inverse of the Archie formation factor F_{inv}. The dependence of F_{inv} on porosity (ϕ) can be represented as the Archie power law (Archie, 1942; Brace, 1977):
Predictive Modeling of CO₂ Sequestration and Storage in Deep Saline Sandstone Reservoirs

\[F_{inv} = \alpha \phi^{n_F} \] \hspace{1cm} (30)

In general, the mass balance and kinetic equations for reactive diffusion takes the form

\[
\phi \frac{\partial c}{\partial t} + \frac{\partial \rho_{\text{min}}}{\partial t} = \frac{\partial}{\partial x} \left(F_{inv} D_{\text{aq}} \frac{\partial c}{\partial x} \right) = -I_{\text{min}}
\] \hspace{1cm} (31)

where \(\rho_{\text{min}} \) comprises the concentration of the component of interest in minerals, and \(I_{\text{min}} \) follows from Equation 15.

Here this factor is approximated as \(F_{inv} = \frac{\phi^{n_F}}{\theta_t} \), with tortuosity coefficient \(\theta_t = \pi / 2 \) for packed spheres, \(n_F \) is equal to 1 for sandstone, and 1.5 for shale. The “standard” \(n_F = 1.5 \) is based on data for igneous rocks of low permeability (Zaraisky and Balashov, 1995; Balashov and Zaraisky, 1982). At a sandstone porosity of 0.25, and shale porosity of 0.05, the inverse factor equals 0.16 and 0.007 for sandstone and shale, respectively, with a ss/sh ratio 22.7. The \(F_{inv} \) value for shale is in a good correspondence with reported measurements around 0.004 for caprocks of 6% porosity (Fleury et al., 2009; Berne et al., 2010).

Equations 31 have important space/time scaling properties (Balashov and Lebedeva, 1989; Lichtner, 1993). Namely, if the linear transformation of \(x, t \) – variables (Lichtner, 1993)

\[
x' = ax \\
t' = bt
\] \hspace{1cm} (32)

where \(a \) and \(b \) are positive real constants, is applied to the system of equations in Equations 31, and the initial and boundary conditions of Equations 31 are invariant to this transformation, then the solution of the system in Equations 31 \(f(x,t) = \{c(x,t), \rho_{\text{min}}(x,t)\} \) is invariant to the next scaling relation

\[
f(x,t;k_{\text{min}},F_{inv}D_{\text{aq}}) = f \left(x',t'; \frac{k_{\text{min}}}{b}, \frac{a^2}{b} F_{inv}D_{\text{aq}} \right)
\] \hspace{1cm} (33)

Imagine a sandstone contact with a semi-infinite shale layer and assume that the pore concentrations at the ss/sh boundary are constant. The use of Equations 33 in this semi-infinite case of ss/sh contact is straightforward. Applying this scaling relation Equations 33 at \(a > 0 \) and \(b = 1 \)

\[
f(x,t;k_{\text{min}},F_{inv}D_{\text{aq}}) = f \left(ax,t; k_{\text{min}} \frac{a^2}{F_{inv}D_{\text{aq}}} \right)
\] \hspace{1cm} (34)
From Equation 34 it immediately follows that for $0 < a < 1$ the change in the inverse Archie factor (IAF) from $\text{IAF} = F_{\text{inv}}$ to $\text{IAF} = a F_{\text{inv}}$ will result in a contraction of the reactive zone in the shale by a value equivalent to the multiplier a. It is clear that this reactive zone contraction will not change the time of porosity sealing at the ss/sh interface ($x = 0$). The new IAF corresponds to decreased coefficient $a^2 \alpha$ instead of α in Archie law (Equation 30).

In the computed model simulation of the ss/sh contact, the shale layer has a finite thickness L_{sh}.

Thus, the boundary conditions of problem (Equation 31) at L_{sh} depend on the linear transformation (Equation 32): in other words, the scaling relation (Equation 34) is not rigorously maintained.

The standard definition of the characteristic dimensionless time for diffusion, $\bar{t} = \frac{D_{sh} t}{L_{sh}^2}$, shows that the multiplication of effective diffusion coefficient $D_{sh} = F_{\text{inv}} D_{aq}$ on the constant number a^2 is equivalent to L_{sh} division on number $\sqrt{a^2} = a$. This means that, for example, IAF can decrease by a factor of 9, or maintain IAF constant and increase the thickness of shale layer by a factor of 3 with the same resultant effect. Thus, multiplying IAF by $a^2 < 1$ will move the problem (Equation 31) with a finite L_{sh} closer to the limiting problem for the semi-infinite shale layer. In this case, the time for porosity closure at the ss/sh interface will tend to its constant value at the semi-infinite shale layer.

Changes in the value of n_F in (Equation 30) results in a more intrinsic and complicated influence on reactive diffusion —this is because porosity is itself a function of time and space. An increase in n_F will not only decrease the IAF according to Archie’s law (Equation 30) but will also increase mineral precipitation rates at the ss/sh interface.
Figure 22: Profiles showing vertical distributions through the sandstone and shale for molecular CO$_2$,aq/mol kg$^{-1}$ dissolved in brine for $n_F = 2$ (left side), and $n_F = 2.5$ (right side) for different times. The dashed lines correspond to the standard $n_F = 1.5$.
Figure 23: Profiles showing vertical distributions through the sandstone and shale for molecular CO$_2$$_{aq}$/mol kg$^{-1}$ dissolved in brine at $\alpha = 0.09\times2/\pi$ (left side), and $\alpha = 0.03\times2/\pi$ (right side) for different times. The dashed lines correspond to the standard case, $\alpha = 2/\pi$.

The effects of n_F and α in Equation 30 on the propagation of CO$_2$$_{aq}$ into the brine in the shale for various time intervals are represented in Figures 22 and 23, respectively. The dashed lines in these Figures correspond to the standard case with $\alpha = 2/\pi$ and $n_F = 1.5$. All computed curves (Figures 22) show strong retardation of CO$_2$$_{aq}$ propagation into the shale with roughly equal effects for $n_F = 2$ at $\alpha = 2/\pi$ and $\alpha = 0.09\times2/\pi$ at $n_F = 1.5$, and for $n_F = 2.5$ at $\alpha = 2/\pi$ and $\alpha = 0.03\times2/\pi$ at $n_F = 1.5$.
As expected, the termination time of porosity sealing at the ss/sh interface increases when α decreases. By extrapolation, the termination time of complete sealing of porosity at the ss/sh interface for the semi-infinite shale layer equals ~17,000 years.

![Figure 24: The porosity closure curves at varying parameters in Archie law for formation factor.](image)

In accordance with above qualitative analysis the different times of porosity closure at ss/sh interface, namely, 7,416, 7,000 and 8,500 years, were observed at n_F varying as 1.5, 2 and 2.5, respectively (Figure 23). For uniform porosity 5% the effects for $n_F = 2$ and $n_F = 2.5$ correspond to new α-s at standard $n_F = 1.5$: $0.22 \times 2/\pi$ and $0.05 \times 2/\pi$, respectively. Figure 21 shows that is indeed the way of ordering of CO$_2$aq propagation curves. With calcite full dissolution in shale at ss/sh interface the rate of ankerite precipitation decreases. The n_F increasing at constant α leads to greater focusing of reactive process at ss/sh interface. This is especially clear from shale porosity at ss/sh interface time dependencies at varying parameters (Figure 23) and from shale reactive zone dynamics in vertical space dimension (Figure 24). In Figure 24 the ankerite was used to mark the expansion of reactive zone in shale with time. In all cases mineral alteration in shale takes place in coherent way of Reactions 27–28. In either way of
n_F increase or α decrease the contraction of reactive zone in shale is observed comparatively to the standard case (Figure 24).

Figure 25: Transformation of shale reactive zone (tracked by ankerite profile) in result of parameter variation in Archie law for formation factor. Left top $n_F = 2$, right top $n_F = 2.5$; left bottom $\alpha = 0.09 \times 2/\pi$, right bottom $\alpha = 0.03 \times 2/\pi$. The standard lines correspond to $\alpha = 2/\pi$, and $n_F = 1.5$

The responses of the CO$_2$ accumulation in shale to the shale porous medium parameters varying are represented in Figure 25. An essential decrease of CO$_2$ accumulated in shale (less than 50% of standard shale storage) to time of porosity closure at interface ss/sh was observed for all variations of α and n_F (Figure 25). Shale with low pores connectivity $n_F = 2.5$ demonstrates
the most favorable behavior in caprock role. Although the CO₂ accumulation is less in each of three different mechanisms of CO₂ shale storage, the largest effects are observed for mineral trapping.

![Figure 26: The time dependence of total relative CO₂ abundance accumulated in shale until terminal time at varied parameters of Archie law. Solid line, standard case \(\alpha = 2/\pi, n_F = 1.5 \); dash line, \(\alpha = 2/\pi, n_F = 2 \); dash-two-dots line, \(\alpha = 0.09 \times 2/\pi, n_F = 1.5 \); short dash line \(\alpha = 2/\pi, n_F = 2.5 \); dash-dot line \(\alpha = 0.03 \times 2/\pi, n_F = 1.5 \). In all cases the decrease of effective diffusion coefficient leads to decrease of CO₂ accumulation, and, consequently to the higher sustainability of ss/sh contact. The vertical lines show the different relative terminal times.](image)

4.5 VARIATION IN MINERAL KINETICS

Five minerals are not maintained at local chemical equilibrium during reactions at the ss/sh interface (Figure 19): quartz, albite, microcline, kaolinite, and illite. Given that quartz is always maintained in excess and its kinetic constant is small and well constrained (Palandri and Kharaka, 2004), its kinetic constant was not varied. However, a sensitivity analysis was carried out to determine the effect of variations in the rate constants for feldspars and clay minerals as
shown in Figure 28. Variations in the feldspar kinetic constants have only a minor influence on the evolution of porosity closure. In contrast, variation in the kaolinite constant demonstrates a profound effect: when the Kln kinetic constant is increased by a factor of 10 (Kln×10), porosity closure occurs at 107 years instead of 7,416 years.

Figure 27: The shale porosity evolution in the point of contact with sandstone in simulations using varying mineral kinetic constants.

As shown in Figure 26, for most cases including the standard simulation, the initial decrease in shale porosity at the interface occurs because kaolinite precipitates and illite dissolves. This reaction (Reaction 26) continues until ~ 2,000 years, when illite precipitation and kaolinite dissolution begins and is accompanied by an increase in porosity. Eventually, ankerite precipitation becomes fast enough and Reaction 27 begins, leading to porosity closure (Figures 16b, 25). This general behavior with respect to porosity closure changes in simulations using higher kinetic constants for the clay minerals (discussed later).

To compare the results from the sensitivity tests, it is convenient to use a dimensionless time variable defined as

$$\bar{T} = \frac{t}{t_{std}}$$ \hspace{1cm} (35)
where $t_{std} = 7,416$ years is the standard termination time (STT), i.e. the time when the porosity at the ss/sh interface disappears for the standard simulation. The dimensionless quantities of stored CO$_2$ are defined as

$$
\begin{align*}
\bar{S}_{CO_2,aq} &= \frac{[CO_{2,aq}]}{[CO_{2,aq}]_{std}} \\
\bar{S}_{HCO_3} &= \frac{[HCO_3^-]}{[HCO_3^-]_{std}} \\
\bar{S}_{CO_2,min} &= \frac{[CO_{2,min}]}{[CO_{2,min}]_{std}} \\
\bar{S}_{CO_2,tot} &= \frac{[CO_{2,tot}]}{[CO_{2,tot}]_{std}}
\end{align*}
$$

(36)

In the last equation, $[CO_{2,aq}]_{std} = 28.79$ mol m$^{-3}$, $[HCO_3^-]_{std} = 51.16$ mol m$^{-3}$, $[CO_{2,min}]_{std} = 376.9$ mol m$^{-3}$, and $[CO_{2,tot}]_{std} = [CO_{2,aq}]_{std} + [HCO_3^-]_{std} + [CO_{2,min}]_{std} = 456.85$ mol m$^{-3}$. These values are concentrations of CO$_2$ dissolved in brine per m3 of shale, HCO$_3^-$ and CO$_3^{2-}$ dissolved in shale brine, CO$_2$ trapped in carbonates, and total CO$_2$ stored in shale at the termination time, respectively, in the standard reactive simulation.

4.5.1 The Effects of Variations in the Feldspar Kinetic Constants

Variations in the Ab kinetic constant only affects CO$_2$ storage in the shale to a minor extent because Ab reactions mostly take place in the sandstone (Balashov et al., 2013). The main influence of variations in the Ab reaction kinetics in the progress of mineral reactions at the contact are related to the pH of the sandstone pore solution during Ab precipitation/dissolution. This effect is not significant with respect to the CO$_2$ accumulation in the shale.

In contrast to Ab, the kinetic constant for Mc has a greater effect on CO$_2$ storage in the shale because microcline participates in Reaction 28. When the microcline kinetic constant is decreased 10 times less than its standard value (Mc\times0.1), Reactions 25 and 28 decrease in rate. This leads to an increase in the porosity closure time (1.025\timesSTT) and a 40% decrease in CO$_2$ accumulation in the shale by this time.

4.5.2 The Effects of Variations in the Clay Mineral Kinetic Constants

4.5.2.1 Kaolinite Kinetic Constant

Taking into account the strong effect of the kaolinite kinetic constant on CO$_2$ propagation into the shale, calculations were completed for seven different values of the Kln kinetic constant. The ratios of the Kln kinetic constant (\bar{k}_{Kln}) to its standard value (k_{Kln}^{std}) were 0.1, 0.316, 0.562, 1, 1.78, 3.16, 10 (i.e., $\log_{10} \left(\frac{k_{Kln}^{std}}{k_{Kln}} \right) = -1, -0.5, -0.25, 1, 0.25, 0.5, 1$) as shown in Figure 26. The vertical lines in Figure 27 show the times where the porosity closes. The CO$_2$ accumulation line is
practically the same (within 15%) for all values of the Kln kinetic constant (Figure 27). However, variation in the kaolinite kinetic constant causes a large range in the times of porosity closure (Figure 26) from 107.5 years at (Kln×10) to 11,370 years at (Kln×0.1). The maximum amount of CO₂ accumulation in the shale increases as the Kln kinetic constant decreases. At a kinetic constant Kln×0.1 this amount is 60% above the standard value (Figure 27).

Figure 28: The time dependence of the relative abundance of CO₂ accumulated in the shale through different mechanisms of CO₂ sequestration (storage) calculated assuming different values of the Kln kinetic constant. From top to bottom: molecular CO₂ dissolved in brine; CO₂ dissolved in brine as HCO₃⁻ and CO₃²⁻; CO₂ trapped in carbonates, and total CO₂ trapped in shale. The vertical lines show the relative termination times for different values of the kaolinite relative kinetic constant, from left to right: 10, 3.16, 1.78, 1, 0.562, 0.316, and 0.1.

The effect of variation in the Kln kinetic constant on the mineral saturation evolution at the shale thin layer (0.0125 m) at the ss/sh interface is shown in Figure 27. Vertical lines in Figure 28 document the termination times of porosity closure for a Kln kinetic constant equal to Kln×10,
for the standard value, and for Kln×0.1. For the standard Kln kinetic constant, Reaction 27 begins at ~ 4,000 years with ankerite precipitation, whereas at (Kln×0.1) the same reaction begins at ~ 8,500 years. In contrast, at Kln×10 the chlorite carbonation begins at ~ 5 years in accordance with other reaction:

\[
\text{Chl} + 4.5\text{Cal} + 0.38\text{SiO}_2_{aq} + 4.5\text{CO}_2_{aq} \rightarrow 1.44\text{Kln} + 3\text{Ank} + 1.5\text{Dol} + 0.12\text{Gt} + 2.5\text{H}_2\text{O}
\]

(37)

In this case at Kln×10 pore fluid is supersaturated by ankerite already in first few years of reactive process. Reaction 37 replaces Reaction 27 because at this time (~ 5 years) the pore interface fluid is supersaturated with respect to kaolinite and undersaturated with respect to illite (Figure 28). It is clear that kaolinite and illite are kinetically coupled with each other (Figure 28, middle). The increase of kaolinite kinetic constant “attracts” the saturation curve of this mineral to local equilibrium line, and “repulses” the illite saturation curve from equilibrium. In the opposite way, when kaolinite kinetic constant decreases its saturation curve deviates from equilibrium and illite saturation curve becomes very close to equilibrium line (Figure 28, middle). The quartz saturation curve is influenced by kaolinite kinetic constant intensively until 100 years (Figure 28, bottom), the fluid silica activity increases corollary with kaolinite kinetic constant. It happens because of acceleration of oligoclase dissolution in sandstone at the expense of kaolinite precipitation.
Figure 29: The evolution of mineral saturations in shale at interface ss/sh under conditions of kaolinite kinetic constant varying. The evolution of ankerite saturation is represented on top figure for the kaolinite kinetic constant 10 times greater than standard constant, the standard kinetic constant, and the kaolinite kinetic constant 10 times less than standard one. The calcite and dolomite saturations correspond to the zero line. The saturation time profiles for kaolinite (dash) and illite (solid) are plotted in middle figure. The saturation time profiles for quartz (long dash – dot), albite (dot), microcline (solid), and chlorite (dash-dot) are plotted in bottom figure. The vertical lines show the terminal times for different values of kaolinite relative kinetic constant, from left to right: 107.5, 7416, and 11,370 years for relative constant 10, 1, and 0.1, respectively.

The greater kaolinite kinetic constant leads to more intensive Kln precipitation, the system responds with more intensive illite dissolution, hence the greater illite undersaturation (Figure 28). Simultaneously, the silica activity increases because of reactions in the sandstone. Furthermore, because the K^+ activity stays constant, the alumina activity in the pore fluid...
decreases (Figure 29, left) to balance illite dissolution and kaolinite precipitation according to Reaction 37. Importantly, chlorite is always maintained very close to local chemical equilibrium with the pore fluid, and the decrease of alumina activity therefore leads to an increase in the Fe(II) activity in solution \(a_{Fe^{++}}(a_{H^+})^{-2} \) (Figure 28, middle). The increase in \(a_{Fe^{++}}(a_{H^+})^{-2} \) leads after 2 years to supersaturation of the fluid in ankerite, and during 5–107 years to continuous ankerite precipitation (Figure 28 and 29) finally with porosity closure at interface. Thus, at a high kaolinite kinetic constant, Reaction 37 is triggered by low alumina activity in pore solution.

![Graph](image)

Figure 30: The activities of primary dissolved aqueous species (\(a_{Al(OH)3} \) and principal iron (II) activity) and pH plotted versus vertical distance at ss/sh contact (50 and 100 years) for the case of high kaolinite kinetic constant (10 times the standard value) in comparison with standard kinetic case. The decrease of alumina activity in brine is accompanied by increase of iron (II) activity in brine.

A similar situation is observed for KIn×3.16. An important change occurs at 400–700 years when ankerite precipitation is triggered by lowering of silica activity instead of alumina activity with consequent increase of \(a_{Fe^{++}}(a_{H^+})^{-2} \).
The case of a low value of the kaolinite constant (Kln×0.1) is similar to the standard simulation. Once again, an increase in the Fe(II) activity $a_{Fe^{2+}} (a_{H^+})^{-2}$ occurs along with a decrease in the alumina activity and at 7,000 years the solution is supersaturated by ankerite (Figure 28, top). The simulations showed that variations of the Kln kinetic constant lead to variations in alumina–silica activities in the shale pore solution at the ss/sh interface. At chlorite local equilibrium with pore solution these activity variations change the Fe(II) activity $a_{Fe^{2+}} (a_{H^+})^{-2}$, which in turn influences the ankerite degree of saturation. The beginning of ankerite precipitation triggers the total carbonation Reactions 27 and 37.

4.5.2.2. Illite Kinetic Constant

The effects of variations in the illite kinetic constant on CO₂ accumulation in the shale are represented in Figure 30. The general scheme is similar to those described for the Kln kinetic constant. The effects manifest mainly in differences in the times of porosity closure. For example, the termination time at (Ill×10) is equal to 744.5 years, and at low kinetic constant (Ill×0.1) – 18,990 years. Additionally, CO₂ accumulation at (Ill×0.1) shows 30% lower values of CO₂ accumulation compared to the standard simulation at 7,416 years (Figure 30, bottom). This occurs at the expense of mineral trapping.
Figure 31: The time dependence of relative CO$_2$ abundance accumulated in shale through different mechanisms of CO$_2$ sequestration (storage) at various values of the illite (Ili) kinetic constant. From top to bottom: molecular CO$_2$ dissolved in brine; CO$_2$ dissolved in brine as ionic forms HCO$_3^-$ and CO$_3^{2-}$; CO$_2$ trapped in carbonates, and total CO$_2$ trapped in shale. The vertical lines show the relative termination times for different values of the illite relative kinetic constant, from left to right: 10, 1 and 0.1. The corresponding times in years are 744.5, 7,416 and 18,990, respectively.
Figure 32: The evolution of mineral volume fractions in shale at the interface of ss/sh for simulations with various values of the illite kinetic constant. Top figure shows calcite precipitation/dissolution (solid line) and precipitation of ankerite (solid) and dolomite (dash) for a value of the illite kinetic constant which is 10 times greater than the standard constant. Also shown are simulations using the standard kinetic constant and an illite kinetic constant which is 10 times less than the standard value. The porosity evolution also is shown (dot dashed lines). Middle figure shows the chlorite dissolution (solid), kaolinite precipitation followed by dissolution (dash), and microcline precipitation/dissolution (solid). Bottom figure depicts quartz precipitation and illite dissolution/precipitation (solid).

However, a high illite constant promotes intense kaolinite precipitation in the shale at the interface (Figure 31, middle). This kaolinite precipitation is accompanied by calcite precipitation (Figure 31, top), microcline precipitation (Figure 30, middle), dolomite precipitation (Figure 31, top), and strong illite dissolution (Figure 30, bottom). Overall, the reactive process is described
by Reaction 26 in the direction of Kln formation. Porosity is sealed at the interface by Kln precipitation. The pore solution is undersaturated by ankerite.

In contrast, for a low value of the illite kinetic constant (Ill×0.1), ankerite precipitation begins at ~800 years and promotes Reaction 37 (Figure 31, top). After Kln/Ill inversion at ~2,000 years this Reaction 37 is replaced by Reaction 27 with illite formation. Compared to the standard case, the rate of reaction is sluggish because of the low illite kinetic constant (Figure 31, bottom).

4.6 DISCUSSION

The second part of this work presented a multicomponent simulation of reaction and diffusion as CO₂ is injected at the ss/sh contact at 75°C and 30 MPa. Initially CO₂ was stored in the sandstone (5 vol. % of sandstone). The initial shale mineral composition contained 15 mass % of Fe-Mg chlorite. In the simulation the shale was modeled as a horizontal layer of 5-m thickness with bottom boundary in contact with the sandstone reservoir and with an upper no-flux boundary. A moderate value of the IAF was chosen, i.e., 7×10⁻³. With standard values for the mineral reaction kinetic constants, complete porosity infilling occurs at the interface by 7,416 years.

At this time point, the sandstone reservoir is separated from the shale layer by an impermeable shale barrier. From a geoengineering point of view, this means that the sandstone reservoir with shale caprock is a very good storage reservoir for CO₂. This process can be defined as auto-sealing of the sandstone reservoir by the ss/sh contact. There are two important arguments to support auto-sealing rather than cracking of the caprock. First, porosity closure at the ss/sh interface is controlled by precipitation of carbonates (ankerite and dolomite) and clay minerals (illite, under standard kinetics, or kaolinite). Carbonates and clays are soft minerals that deform under stress by creep (Balashov and Yardley, 1998). Furthermore, second, the reactions here all take place under confined stress at ~2 km depth.

The diffusivity of the shale has a large influence on the rate of reaction process at the ss/sh interface. A decrease in the IAF to (2–4)×10⁻⁴ leads to a slowdown in the reactive process in the shale and leads to narrowing of the shale reactive zone.

The modeling showed that the minerals taking part in the ss/sh contact interaction are divided in two groups. Namely, minerals which react at local equilibrium—carbonates, chlorite and goethite; and minerals reacting in the kinetic regime—quartz, feldspars and clays. In addition, there are two important time periods in describing the kinetic behavior of kaolinite and illite. During the first period up to ~2,000 years, the shale pore solution at the ss/sh interface is supersaturated by Kln and undersaturated by Ill. Thus, Reaction 26 goes from right to left. With time at the ss/sh contact the solution becomes more alkaline and enriched by bicarbonate ion, and after 2,000 years it directs the Reaction 26 from left to right as the shale pore solution becomes supersaturated by illite, and undersaturated by kaolinite. The time of the Kln/Ill inversion was always around of 2,000 years.

For the CO₂ rich geochemical environment Black and Haese (2014) discussed the conflicting reports of whether chlorite inhibits a reactivity of other minerals as low soluble coating on mineral grains (Lu et al., 2012) or accelerates the diagenetic alteration through its replacement by carbonates (Watson et al., 2004; Luquot et al., 2012; Armitage et al., 2013). The results of this reactive modeling showed that both processes might be activated in dependence on the activities of alumina and silica in pore brine. In this study chlorite reacted close to local equilibrium with
pore fluid, that was not because of its high kinetic constant (which is moderate one and close to the alkali feldspar constants), but because of it relatively high content and specific surface area in shale. Thus, the “breath” of high activities of alumina and silica from reactions in sandstone corresponded to low ferrous iron activity. Therefore, pore brine was undersaturated by ankerite. In this case chlorite demonstrated very inert behavior. In the opposite way, the low activities of alumina and silica led to increased ferrous iron activity in the pore brine and triggered chlorite carbonation (12–13).

The reactive processes at the ss/sh contact were most sensitive to the kinetic constants of kaolinite and illite. With a high value of the kaolinite kinetic constant (Kln×10), the sandstone reservoir auto-sealed within 107 years because of the chlorite carbonation Reaction 37. In contrast, a high illite kinetic constant (Ill×10) produces auto-sealing at 740 years due to intensive kaolinite precipitation in accordance with Reaction 26. Kln and Ill demonstrate kinetically coupled behavior: the increase in the kinetic constant of one of the minerals brings that mineral closer to equilibrium, simultaneously moving the other mineral away from equilibrium.
5. **CONCLUSIONS**

To build confidence in the ability to predict the mechanisms and rates of CO₂ sequestration in the subsurface, models of mineral-brine-CO₂ reactions are needed. Running such models requires kinetic and thermodynamic databases as well as data for reservoirs and formation fluids. Many reactive transport models are available and several researchers have modeled individual systems. To understand and evaluate the models, in the first part of this work a baseline sandstone reservoir is proposed that can be modeled by any such reactive transport code. If many researchers model CO₂ interactions for this baseline model, this would allow systematic comparisons between models in order to learn what behaviors are well-predicted or which behaviors are model-dependent. Furthermore, by focusing on reaction + diffusion (without advection), the important effects, if any, of the kinetics of mineral reaction can be isolated.

In the model, 97% of the maximum CO₂ sequestration, 34.5 kg CO₂ per m³ of sandstone, is attained by 4,000 a even though the system does not achieve chemical equilibrium until ~25,000 a. The maximum represents about 20% CO₂ dissolved as CO₂(aq), 50% dissolved as HCO₃⁻, and 30% precipitated as calcite: 70% solubility trapping versus 30% mineral trapping. The extent of sequestration as HCO₃⁻ at equilibrium can be calculated from equilibrium thermodynamics without reactive transport modeling because it is mainly determined by the amount of Na⁺ in the initial sandstone in a soluble mineral (here, oligoclase); in contrast, the extent of trapping into calcite is determined by the initial content of a soluble Ca-containing silicate (here, oligoclase + smectite). This powerful observation may be generally true for most lithologies and should be explored in other simulations for other systems.

The sensitivity studies reported here are consistent with the conclusion that variations in reaction rates mostly affect storage-reservoir behavior in the 10–1,000 a time frame. Although the modeling did not include advection, these conclusions about the importance of kinetics from 10–10,000 a should also be true for systems that include advection + diffusion because kinetic limitation should be even more important in advective systems.

The reactive diffusion modeling revealed that the kinetics of oligoclase, albite, and smectite are all significant for sequestration in the sandstone reservoir and thus are phases that should be considered for any second-generation models of CO₂ storage. The modeling furthermore demonstrates that the behavior of all components is interconnected. Therefore, predicting exact timescales for CO₂ trapping will not be possible given the impossibility of fully constraining all heterogeneities and mineral distributions in the subsurface. However, general observations about mineral behaviors should be possible.

In the second part of work, reactive transport at the contact of the CO₂ storage reservoir—i.e., the (sandstone)/caprock (shale) interface—has shown a high sensitivity to the kinetic constants of the clay minerals (kaolinite and illite) and to the shale transport properties. Chlorite plays a key major role in the development of the reactive zone in the shale. In most cases chlorite carbonation with formation of ankerite, dolomite, and illite (kaolinite) leads to autosealing of the ss/sh contact. An increase in the kinetic constants of the clay minerals results in a remarkable decrease in the autosealing times (a decrease of these constants works in the opposite way). A decrease in the shale diffusivity causes contraction of the shale reactive zone and an increase in the autosealing times.
This page intentionally left blank.
6. REFERENCES

Black, J. R.; Haese, R. R. Chlorite Dissolution rates under CO₂ saturated conditions from 50 to 120°C and 120 to 200 bar CO₂. *Geochimica et Cosmochimica Acta* 2014, 125, 225–240.

Hnedkovsky, L.; Wood, R. H.; Balashov, V. N. Electrical Conductances of Aqueous Na2SO4, H2SO4, and their Mixtures: Limiting Equivalent Ion Conductances, Dissociation...
Predictive Modeling of CO₂ Sequestration and Storage in Deep Saline Sandstone Reservoirs

