Novel Additively Manufactured and Internally Cooled Airfoils for Increasing Small Industrial Gas Turbine Efficiency

Matthew Searle
NETL Support Contractor

ASME Turbo Expo 2023, Boston, Massachusetts
GT2023 101006
June 26-30, 2023
Disclaimer

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Matthew Searle1,2, Arnab Roy1,2, Sridharan Ramesh1,2, Tim Floyd1,2, Forrest Ames1,2, DougStraub1

1National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA

2NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA
Outline

1. Introduction and Motivation
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Introduction and Motivation

- Small (<20 MW) industrial gas turbines produce roughly 2 GW of electricity in U.S. combined heat and power (CHP) applications.\(^1\)
- Blades and vanes in this turbine class are internally cooled.\(^2\)
- Others have used cooling technology curves to compare cooling technologies.\(^3\)
- Experimentally measured technology curves for an entire airfoil are rarely reported.

Energy, Emissions, & Environment:
- 35-50% reduction in GHG emissions
- 2% point improvement in efficiency

Cost & Competitiveness:
- 25% reduction in payback period

Technical & Scientific:
- Novel internal cooling channel designs
- AM alloy powder enhancements

Other Impacts:
- Thermal energy storage can reduce levelized cost of electricity (LCOE) by 7-10% AND reduce variable grid demand

Materials and Methods

Test Setup

NETL Conjugate Aerothermal (CAT) Rig

Operation:
• Steady state
• Tests over 10-20 min intervals, 1 Hz sampling frequency

Measurements:
• Infrared (IR) blade surface temperature*
• *w/calibrated radiation model

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant mass flow</td>
<td>1-5 g/s</td>
</tr>
<tr>
<td>Coolant inlet temperature</td>
<td>325 K</td>
</tr>
<tr>
<td>Hot gas mass flow</td>
<td>0.64 kg/s</td>
</tr>
<tr>
<td>Hot gas inlet temperature</td>
<td>650 K</td>
</tr>
</tbody>
</table>
Test Approach

Performance Comparison via Technology Curves

\[\phi = \frac{T_g - T_{w,ext}}{T_g - T_{c,in}} \]

\[HLP = \frac{\dot{m}_c c_p}{h_{ext} A_{ext}} \]

\[\eta_c = \frac{\phi_{avg}}{HLP(1 - \phi_{avg})} \]
Materials and Methods

Test Airfoils

Baseline vane
Baseline blade
NETL double wall (stacked design)
Lattice airfoil
Incremental impingement
Measurement Approach and Uncertainty Quantification

- IR measurements with FLIR Model A8300sc
- Camera calibrated with IR-564/301 from Infrared Systems Development Corporation
- Radiation transport model accounts for IR reflections, window transmission, and surface curvature
- Model calibrated in situ to determine reflection and transmission constants
- Uncertainty determined using Kline and McClintock approach

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (IR Camera)</td>
<td>0.25% (measured value)</td>
</tr>
<tr>
<td>Temperature (Thermocouple)</td>
<td>Maximum of 2.2 K or 0.75% of measured value</td>
</tr>
<tr>
<td>Mass Flow Coolant</td>
<td>0.25% of measured value</td>
</tr>
<tr>
<td>Mass Flow Hot Gas</td>
<td>0.5% of measured value</td>
</tr>
<tr>
<td>Differential Pressure</td>
<td>0.2% of measured value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Avg</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{avg}</td>
<td>± 0.019</td>
<td>± 0.025</td>
<td>± 0.016</td>
</tr>
<tr>
<td>ϕ_{99}</td>
<td>± 0.023</td>
<td>± 0.029</td>
<td>± 0.019</td>
</tr>
<tr>
<td>η_c</td>
<td>± 0.040</td>
<td>± 0.108</td>
<td>± 0.004</td>
</tr>
<tr>
<td>HLP</td>
<td>± 0.007</td>
<td>± 0.034</td>
<td>± 0.001</td>
</tr>
</tbody>
</table>

Coupon for flat surface IR calibration
Geometry used to model surface emissivity
Results and Discussion

Temperature Maps

Heat load parameter (HLP)

<table>
<thead>
<tr>
<th>HLP = 1.0</th>
<th>Baseline Blade</th>
<th>Baseline Vane</th>
<th>Double Wall</th>
<th>Incremental Imping.</th>
<th>Lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HLP = 2.0</th>
<th>Baseline Blade</th>
<th>Baseline Vane</th>
<th>Double Wall</th>
<th>Incremental Imping.</th>
<th>Lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature (K)

Replicates
Pressure Drop and LE/MC/TE Average Temperatures

Leading edge (LE)

Mid-chord (MC)

Trailing edge (TE)

Baseline blade
Cooling Technology Curves

Overall Cooling Effectiveness vs. Heat Load Parameter

Advanced Target
Baseline Target
Internal Cooling Efficiency

\[\Delta P \sim f(\text{HLP}) \]

\[\eta_c \sim f(\text{HLP}) \]

- Lattice
- NETL Double Wall
- Baseline Vane
- Baseline Blade
- Incremental Imping.
• Advanced design objectives:
 • Operate at advanced condition
 • Achieve $\eta_c \geq \eta_c,\text{base}$.
• Baseline blade:
 • η_c: 0.61 decreases to 0.48 to achieve $\phi_{avg} = 0.37$ (100 K above the baseline target)
• NETL double wall:
 • η_c: 0.95 decreases to 0.7 to achieve $\phi_{avg} = 0.37$
• η_c for NETL double wall at +100 K firing temperature is 10% points higher than the baseline blade at the current state-of-the-art

<table>
<thead>
<tr>
<th>Cooling Design</th>
<th>Minimum HLP</th>
<th>Cooling Effectiveness ϕ_{Avg}</th>
<th>Internal Cooling Efficiency η_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Blade</td>
<td>1.38</td>
<td>3.22</td>
<td>0.46</td>
</tr>
<tr>
<td>Baseline Vane</td>
<td>0.77</td>
<td>1.81</td>
<td>0.37</td>
</tr>
<tr>
<td>NETL Double Wall</td>
<td>0.57</td>
<td>1.36</td>
<td>0.35</td>
</tr>
<tr>
<td>Lattice</td>
<td>0.93</td>
<td>1.89</td>
<td>0.41</td>
</tr>
<tr>
<td>Incremental impingement</td>
<td>1.26</td>
<td>2.83</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Conclusions

- Efficiency of CHP gas turbines (<20 MW) can be improved through additively manufactured (AM) airfoil cooling schemes.
- Cooling performance of five AM airfoils was determined.
- Tests indicated that enhanced airfoil cooling schemes allow a 100 K increase in firing temperature.
- The NETL Double Wall was uniformly cooled, had the highest performance, and achieved an internal cooling efficiency 10 percentage points higher than baseline blade.
- Design considerations for AM included modifications to eliminate overhangs and allow powder removal.
Acknowledgments

This work was performed in support of an award by the U.S. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy Advanced Manufacturing Office and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center.