First-Principles Studies of Tritium Species Dissociability and Diffusivity Across the Interface of Nickel-Plated Zircaloy-4

De Nyago Tafen
Research Scientist, NETL Support Contractor
This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
De Nyago Tafen1,3, Hari Paudel2,3, Yuhua Duan2, Morgan Redington2,4

1National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA

2National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

3NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA

4Oak Ridge Institute for Science and Education (ORISE), 626 Cochran Mill Road, Pittsburgh, PA 15236, USA
Scope of Work

Four Subtasks

- **Task 1:** Exploring 3H_2 and 3H_2O binding sites and their dissociation on the (111) surface of Ni. Based on available literature data, we will obtain the dissociation energy according to the possible dissociation step of $^3H_2O\rightarrow O^3H^+H\rightarrow O^+H^+H$, $^3H_2O\rightarrow O^+H^+H^3H$, and $^3H_2\rightarrow^3H^+H$. **Completed**

- **Task 2:** Determining the 3H species dissolve from surface into Ni bulk. For those dissociated species from Task 1, we will calculate their diffusion barriers from surface to the bulk to identify the most possible 3H species that can be dissolved into Ni metal, and verify if NiO$_x$ or Ni(O3H)$_x$ phase can be formed. **Completed**

- **Task 3:** Identifying the energy barrier of 3H species diffusion in the Ni bulk. Based on the 3H species dissolved into Ni metal and the formation of NiO$_x$ or Ni(O3H)$_x$ phase from Task 2, we will calculate the energy barriers of 3H species diffusion in Ni bulk (with NiO$_x$ or Ni(O3H)$_x$) to determine which 3H species can get through the Ni coating to reach the Ni-Zircaloy-4 interface. **Completed**

- **Task 4:** Build the interface of Ni and Zr metal. We will create possible Ni-Zr interface and clarify the most stable configuration for further study (FY24) of 3H species diffusion across the interface and then dissolution into Zircaloy-4 getter to form metal hydrides. **Completed**
Milestones/Deliverables

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Tangible and Measurable Achievement (Verification)</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Obtain configurations of 3H species (3H, O^3H, O) on Ni (111) surface and calculate their diffusion barriers in Ni coating layer</td>
<td>Mar. 31, 2023</td>
</tr>
<tr>
<td>M2</td>
<td>For O^3H and O species diffusions, determine if NiO/Ni(OH)$_2$ phase can be formed</td>
<td>Jul. 31, 2023</td>
</tr>
<tr>
<td>M3</td>
<td>Create few most feasible Ni-Zr interface models for further FY24 work</td>
<td>Aug. 31, 2023</td>
</tr>
<tr>
<td>M4</td>
<td>Wrap up the calculations into manuscript and final report</td>
<td>Sep. 30, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Description of Data and Information/Knowledge</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Monthly informal status reports (e.g., email)</td>
<td>NLT Last Business Day of Each Month</td>
</tr>
<tr>
<td>D2</td>
<td>Mid-year review presentation</td>
<td>NLT Apr. 30, 2023</td>
</tr>
<tr>
<td>D3</td>
<td>End-of-year presentation at the Tritium Science Technical Exchange</td>
<td>NLT Sep. 30, 2023</td>
</tr>
<tr>
<td>D4</td>
<td>Final formal report (e.g., NETL technical report)</td>
<td>Sep. 30, 2023</td>
</tr>
</tbody>
</table>
Deliverables

Publications

Presentations

Mechanism of Dissociation of 3H$_2$O and 3H$_2$ on Ni(111)

Literature Review

- $H_2O
ightarrow H + H$

- $H_2 (g)
ightarrow H + H$

<table>
<thead>
<tr>
<th>Size</th>
<th>Method</th>
<th>E_a(eV)</th>
<th>E_r(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 4</td>
<td>PBE+vdW</td>
<td>0.09* (0.25 ML)</td>
<td>-0.60</td>
</tr>
<tr>
<td>4 x 4</td>
<td>PBE+vdW</td>
<td>0.03** (0.125 ML)</td>
<td>-0.75</td>
</tr>
<tr>
<td>4 x 4</td>
<td>PBE+vdW</td>
<td>0.13** (0.25 ML)</td>
<td>-0.74</td>
</tr>
</tbody>
</table>

*Both H-atoms located at the fcc and hcp sites adjacent to each other. **fcc and hcp sites opposite to each other. ML = monolayer – defines H coverage.
Possible Stable Compounds of Nickel

<table>
<thead>
<tr>
<th>Compound</th>
<th>Space Group</th>
<th>Formula Unit</th>
<th>Total Energy HSE06</th>
<th>Total Energy PBE</th>
<th>Total Energy PBE+U</th>
<th>HSE06 ΔH</th>
<th>PBE ΔH</th>
<th>PBE ΔH Corrected</th>
<th>PBE+U ΔH Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>Fm-3m</td>
<td>1</td>
<td>-6.448</td>
<td>-5.459</td>
<td>-1.842</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>1</td>
<td>-7.713</td>
<td>-6.772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>1</td>
<td>-17.036</td>
<td>-9.862</td>
<td>-9.862</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td>Fm-3m</td>
<td>2</td>
<td>-17.970</td>
<td>-11.655</td>
<td>-10.278</td>
<td>-3.004</td>
<td>-1.265</td>
<td>-1.945</td>
<td>-4.184</td>
</tr>
<tr>
<td>NiO₂</td>
<td>P-3m1</td>
<td>1</td>
<td>-25.491</td>
<td>-17.350</td>
<td>-14.277</td>
<td>-2.007</td>
<td>-2.029</td>
<td>-3.389</td>
<td>-3.933</td>
</tr>
<tr>
<td>Ni₃O₄</td>
<td>Fd-3m</td>
<td>8</td>
<td>-61.366</td>
<td>-41.783</td>
<td>-34.696</td>
<td>-7.950</td>
<td>-5.681</td>
<td>-8.401</td>
<td>-12.165</td>
</tr>
</tbody>
</table>

Formation energy of NiₓOᵧHₓ is defined as: \[\Delta H(NiₓOᵧHₓ) = E_{DFT}(NiₓOᵧHₓ) - x\mu_{\text{solid}}^{\text{Ni}} - y\mu_{\text{gas}}^{\text{O}} - z\mu_{\text{gas}}^{\text{H}} \]

ΔH corrected obtained using DFT O₂ corrected value

PBE - Perdew-Burke-Ernzerhof
Ni(OH)$_2$ Formation and Stability

Thermodynamic Basis

- Stability requires smaller atomic chemical potential than corresponding elemental solid, i.e., $\mu_i \leq \mu_i^{\text{solid/gas}}$

 and

 $$\Delta \mu_{Ni} + 2\Delta \mu_O + 2\Delta \mu_H = \Delta H(Ni(OH)_2)$$
 $$\Delta \mu_i = \mu_i - \mu_i^{\text{solid/gas}}$$
 $$\Delta \mu_i \leq 0, \quad i = Ni, O, H$$

- Constraints on $\Delta \mu_i$ to avoid the formation of other competing phases, by considering the existing solids NiO, Ni$_2$O$_3$, Ni$_3$O$_4$, NiO$_2$, NiOOH

 $$\Delta \mu_{Ni} + \Delta \mu_O \leq \Delta H(NiO)$$
 $$\Delta \mu_{Ni} + 2\Delta \mu_O \leq \Delta H(NiO_2)$$
 $$2\Delta \mu_{Ni} + 3\Delta \mu_O \leq \Delta H(Ni_2O_3)$$
 $$3\Delta \mu_{Ni} + 4\Delta \mu_O \leq \Delta H(Ni_3O_4)$$
 $$\Delta \mu_{Ni} + 2\Delta \mu_O + \Delta \mu_H \leq \Delta H(NiOOH)$$
Stable chemical potential region of the bulk Ni(OH)$_2$ in terms of the chemical potentials $\Delta \mu_O$, $\Delta \mu_{Ni}$, and $\Delta \mu_H$ using PBE functional. Points A, B, C, D, and E define the limiting stable conditions, the allowed chemical potential range for Ni(OH)$_2$, to be a stable phase.
Stable chemical potential region of the bulk Ni(OH)$_2$ in terms of the chemical potentials $\Delta \mu_O$, $\Delta \mu_{Ni}$, and $\Delta \mu_H$ using HSE06 functional. Points A, B, C, and D define the limiting stable conditions, the allowed chemical potential range for Ni(OH)$_2$, to be a stable phase.
HSE06 correctly predict NiO as the most stable among all Ni oxides in agreement with experiments.

PBE incorrectly assigns the lowest formation energy to Ni$_3$O$_4$.

PBE+U follows the same trend as HSE06.

The ΔH per atom of Ni(OH)$_2$ is lower than that of NiOOH in HSE06 (-1.25 eV/at vs. -1.03 eV/at), but it is the reverse in PBE (-0.82 eV/at vs. -0.85 eV/at).
3H and O Diffusion thru Ni(111) Surface

Diffusion of H from Ni(111) Surface to Bulk

![Diagram showing energy profiles for different states of hydrogen and oxygen diffusion through Ni(111) surface.]

- $E_{\text{migr}} = E_{\text{TS}} - E_{\text{IS}}$
- $E_r = E_{\text{FS}} - E_{\text{IS}}$

H: fcc
- White: H
- Green: Ni

H: octahedral
- White: H
- Red: O

H: tetrahedral
- Green: Ni

Legend:
- White: H
- Green: Ni
- Red: O
H and O Diffusion thru Ni(111) Surface (cont.)

H Migration from Surface to Subsurface

![Energy vs Reaction Coordinate Diagram](image)

- $E_{\text{mig}} = 0.572 \text{ eV}$
- $E_{\text{f}} = 0.460 \text{ eV}$
- $E_{\text{mig}} = 0.618 \text{ eV}$
- $E_{\text{f}} = 0.500 \text{ eV}$
H and O Diffusion thru Ni(111) Surface (cont.)

O Migration from Surface to Subsurface

\[0 = \text{Niv}, \text{Ni vacancy} \]
H and O Diffusion thru Ni(111) Surface (cont.)

\[\text{O}_{\text{subsurf-octa}} + 2\text{H}_{\text{fcc}} \rightarrow \text{O}_{\text{subsurf-octa}} + \text{H}_{\text{fcc}} + \text{H}_{\text{subsurf-octa}} \]
H and O Diffusion thru Ni(111) Surface (cont.)

\[\text{O}_{\text{surf-fcc}} + 2\text{H}_{\text{surf-fcc}} \rightarrow \text{O}_{\text{surf-fcc}} + \text{H}_{\text{surf-fcc}} + \text{H}_{\text{subsurf-oct}} \rightarrow \text{O}_{\text{surf-fcc}} + 2\text{H}_{\text{subsurf-oct}} \]
H and O Diffusion thru Ni(111) Surface (cont.)

\[2O_{\text{surf-fcc}} + 2H_{\text{surf-fcc}} \rightarrow 2O_{\text{surf-fcc}} + H_{\text{surf-fcc}} + H_{\text{subsurf-oct}} \rightarrow 2O_{\text{surf-fcc}} + 2H_{\text{subsurf-oct}} \]
H and O Diffusion thru Ni(111) Surface (cont.)

\[\text{O}_{\text{surf-fcc}} + \text{OH}_{\text{surf-fcc}} + \text{H}_{\text{surf-fcc}} \rightarrow \text{O}_{\text{surf-fcc}} + \text{OH}_{\text{surf-fcc}} + \text{H}_{\text{subsurf-oct}} \]
Subsurface Ni(OH)$_x$ Formation - Case 1

$O_{\text{subsurf-octa}} + H_{\text{subsurf-octa}} + H_{\text{fcc-octa}} \rightarrow OH_{\text{subsurf}} + H_{\text{fcc-octa}}$

$O_{\text{subsurf}} + H_{\text{subsurf}} + H_{\text{fcc}}$
Subsurface Ni(OH)$_x$ Formation - Case 2

$O_{\text{subsurf-octa}} + 2H_{\text{fcc-octa}} \rightarrow O_{\text{subsurf-octa}} + H_{\text{hcp-octa}} + H_{\text{fcc-octa}} \rightarrow OH_{\text{subsurf}} + H_{\text{fcc-octa}}$

OH formation

H$_{\text{fcc}}$ + O$_{\text{subsurf}}$

H$_{\text{hcp}}$ + O$_{\text{subsurf}}$

H subsurf octah
Subsurface Ni(OH)$_x$ Formation - Case 3

Migration of OH Species from Surface to Subsurface

Activation barrier could not converge

$E_r = 1.944$ eV

Migration of OH species from the surface to the subsurface is less probable
O Diffusion from Subsurface to Subsubsurface

$O_{\text{subsurf-octah}} \rightarrow O_{\text{subsubsurf-tetrah}} \rightarrow O_{\text{subsubsurf-octah}}$

Diagram showing the transition from $O_{\text{subsurf-octah}}$ to $O_{\text{subsubsurf-octah}}$ through $O_{\text{subsubsurf-tetrah}}$. The energy profile is indicated with a graph, showing the reaction coordinate in Å and energy in eV.
Zr/Ni Interface Models

Zr(0001)/Ni(111) Interfaces and Optimization

Ni(111) : 9 x 9
Zr(0001) : 7 x 7

Different lattice mismatch

Ni(111) : 5 x 5
Zr(0001) : 4 x 4

Energy (eV)

Ni(111)/Zr(0001) interface distance (Å)

\(d_z \)
Zr Surface Calculations – M. Redington

Zr(0001) and Zr(10-10) Surfaces

\[\gamma = \frac{E_{slab} - N E_{bulk}}{2A} \]

3H adsorption on surfaces

<table>
<thead>
<tr>
<th>Site</th>
<th>FCC</th>
<th>Bridge</th>
<th>HCP</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{bind}) (eV)</td>
<td>-0.987</td>
<td>-0.737</td>
<td>-1.006</td>
<td>0.264</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Bridge (upper layer)</th>
<th>Bridge (lower layer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{bind}) (eV)</td>
<td>-0.797</td>
<td>-0.767</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- We explored $^3\text{H}_2$ and $^3\text{H}_2\text{O}$ binding sites and their dissociation on the (111) surface of Ni and concluded that the possible dissociation steps are $^3\text{H}_2\text{O} \rightarrow \text{O}^3\text{H} + ^3\text{H} \rightarrow \text{O} + ^3\text{H} + ^3\text{H}$, and $^3\text{H}_2 \rightarrow ^3\text{H} + ^3\text{H}$.

- Our thermodynamical calculations and analysis show that there exits a stable chemical potential region where NiO_x or $\text{Ni(O}^3\text{H)}_x$ phase forms.

- $^3\text{H}_2$ and $^3\text{H}_2\text{O}$ will dissociate on the surface of Ni and diffuse into the subsurface. Our diffusion barrier results predict:
 - O will most likely stay in the Ni layer to form NiO_x or $\text{Ni(O}^3\text{H)}_x$ due to its high diffusion energy barrier compared to that of ^3H.
 - Formation of NiO_x or $\text{Ni(O}^3\text{H)}_x$ phase in Ni subsurface layer is limited by O diffusion energy barrier and Ni vacancy defects.
 - Only ^3H will pass through Ni layer to across Ni-Zircalony-4 interface to form metal hydrides.

- Interface models Ni(111)/Zr(0001) were created and optimized for further study (FY24) of ^3H species diffusion across the interface and then dissolution into Zircaloy-4 getter to form metal hydrides.
Thank You!

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT:
De Nyago Tafen; Yuhua Duan
Denyago.tafen@netl.doe.gov
Yuhua.Duan@netl.doe.gov