Consideration of Non-Ideal Detonation Regimes Influenced by Wave Modes in a Water-Cooled Rotating Detonation Engine Using OH* Chemiluminescence

Kristyn B. Johnson
Research Mechanical Engineer, NETL Support Contractor

ASME Turbo Expo 2023
June 26-30, 2023
Disclaimer

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Kristyn B. Johnson¹,², Donald H. Ferguson¹, Justin M. Weber¹, Andrew C. Nix³

¹National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA

²NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA

³West Virginia University, Mechanical and Aerospace Engineering, 1306 Evansdale Drive, Morgantown, WV 26506, USA
Outline

• Introduction
• Experimental Facility
• Method
 • OH* chemiluminescence anatomy
 • Evaluation of anatomy detection method
 • Summary data generation
• Global Comparisons
 • Equally spaced waves
 • Galloping waves
• Conclusion
Introduction

• Rotating detonation engines (RDE) offer an alternative strategy for advancing the thermodynamic efficiency of gas turbine engines
• RDE technology has matured to mechanism research
 • Large volumes of experimental data are available
 • The presence and proportion of ideal and non-ideal combustion regimes should be compared across a variety of process conditions and wave modes

• Objective: Large-scale data analysis seeks to summarize proportional heat release associated with commensal, parasitic, and detonative combustion averaged across individual traces of OH* chemiluminescent data acquired at the detonation plane

[2] Nordeen
Water-Cooled NETL RDE

- Water-Cooled NETL RDE
 - Uncirculated water
 - Run times exceeding 30 seconds

- OH* Chemiluminescence Probe
 - Port A1 (0.683 cm downstream injector tip)
 - 1-mm diameter fused silica core aluminum buffer Accu-Glass Products fiber optic
 - Cleaved end of the fiber is exposed to the detonation channel, recessed 2 mm
 - Edmond Optics UG11 narrow band pass filter with center wavelength of 325 nm and full width half-max of 110 nm
Method – OH* Anatomy

- Systematic approach for large-scale data processing (no manual annotation)
 - Anatomy derived from University of Michigan
- OH* traces normalized across 10-11 second window
- Sample window width initialized according to dominant fast Fourier transform (FFT) frequency
- Adaptive window widths:
 - Peak OH* value is found within window
 - If peak lies outside 40-60% of window width, the window is shortened or broadened, respectively
Method – OH* Anatomy

- Regimes:
 - Parasitic combustion: begins as first sample
 - Detonation front: maximum second derivative
 - Commensal combustion: magnitude of first derivative falls below 40% of minimum
 - Commensal continues to end of sample window
- Each section integrated via trapezoidal integration
- Integrated values of each section are added to a 10-wave sum to generate relative percent combustion values
Method – Evaluation of Process

- Less ideal OH* traces due to operating conditions
 - Method addresses varying degrees of parasitic and commensal combustion as well as small magnitude detonations
- Individual vs. phase averaging
Method – Summary Data

- Sets of 10 concurrent waves are used to generate a single value for average relative combustion proportions.
- Values are found at 20 timesteps throughout the 10-11 second window.
- The average across the 1 second window is used as a datapoint representing the given operating condition.
Global Comparisons – Equally Spaced Waves

- Percent detonation vs. equivalence ratio at constant backpressure
 - Somewhat inverse relationship shown

- Percent detonation vs. wave count at various process conditions
- A clearer correlation between wave count and percent detonation
Global Comparisons – Equally Spaced Waves

- Percent detonation vs. wave velocity at varying process conditions
- Wave velocity extracted from FFT, divided by wave count

- Percent detonation vs. detonation time at various process conditions
- Detonation time is time from passing of wave front to commensal, multiplied by wave velocity
Global Comparisons – Galloping Waves

- Percent detonation for galloping waves should be considered
- Values are plotted alongside equally spaced waves

- Galloping waves show fairly comparable proportions of percent detonation
- Any short-timescale variations are not captured by averaging technique
Conclusions

• A method to analyze individual wave traces in experimental OH* probe data was proposed.

• Summary data points representing averages across 200 waves, comprised of 10-wave groupings were sampled at 20 successive time intervals throughout a 1 second window.

• Trends showed improved percent detonation for decreasing equivalence ratios, increasing wave counts, decreasing wave velocities, and increasing detonation time.
 • Suggesting that lower equivalence ratios, known to lead to lower wave velocities and increased wave counts at a given process state, result in extended detonation times, leading to increased percent detonation.
 • It is believed that an increasing wave number reduces the surface area of the fill region, thereby reducing contact burning which dominates parasitic combustion.

• This study has shown that larger wave numbers consume higher proportions of reactants through detonation, a primary goal of RDE design.
References

Acknowledgments

This work was performed in support of the U.S. Department of Energy's (DOE) Fossil Energy and Carbon Management’s Hydrogen with Carbon Management Technologies Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center’s Turbines Program. External images were generously provided by Dr. Myles Bohon from TU Berlin.
NETL RESOURCES

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory