

Computational Study of MOFs for Direct Air Capture Using Flexible Force Fields

Tiernan Baucom¹, Samir Budhathoki², Jan Steckel³

¹North Carolina State University and MLEF, Department of Energy, National Energy Technology Laboratory

²Leidos Research Support Team

³Department of Energy, National Energy Technology Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

U.S. DEPARTMENT OF
ENERGY
Energy Efficiency
& Renewable Energy

U.S. DEPARTMENT OF
ENERGY
Office of Fossil Energy

U.S. DEPARTMENT OF
ENERGY
Office of Science

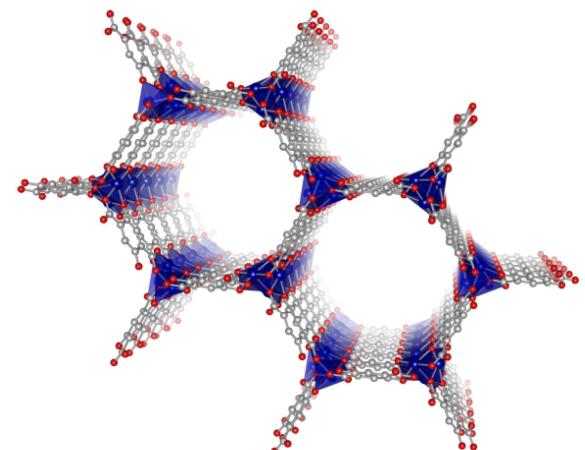
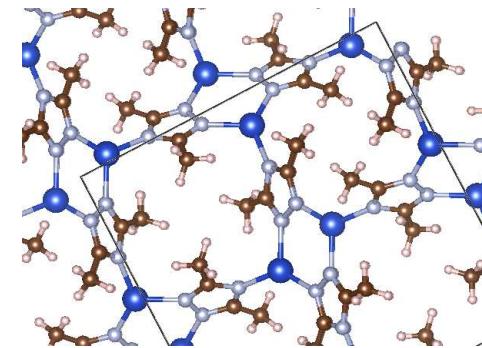
Lawrence Livermore
National Laboratory

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY
EST. 1943

NREL
Transforming ENERGY

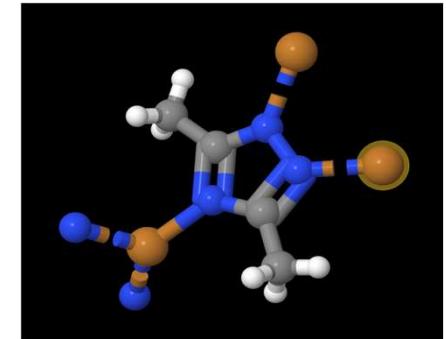
Pacific Northwest
National Laboratory

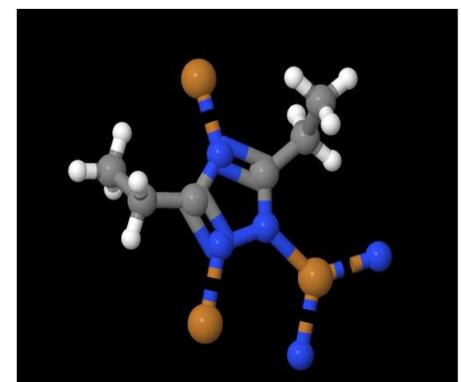
Industry need



- ▶ An estimated 35 billion tons of CO₂ are released into the atmosphere annually (Schoedel et al. Nat. Energy 2016)
- ▶ Point source carbon capture can help slow the rate at which humans are emitting CO₂ into the atmosphere, but current estimates indicate that this won't be enough to avert the worst effects of climate change.
- ▶ Direct air capture (DAC) methods will be needed to **reduce** the global atmospheric CO₂ concentration.
- ▶ Metal-organic framework materials show potential for Direct Air Capture due to promising gas sorption properties

Approach

Metal Organic Frameworks


- ▶ MOFs are “are highly porous crystalline materials created via the self-assembly of inorganic metal or metal oxide subunits with organic linkers”
(Budhathoki et al., EES, 2019)
- ▶ Beneficial Qualities of MOFs
 - ▶ Potential for high CO_2 adsorption
 - ▶ High surface area
 - ▶ Quick, low temperature regeneration of DAC sorbent material
 - ▶ Low energy penalty carbon capture


Vervoorts et al., ACS Appl. Mater. Interfaces, 2020

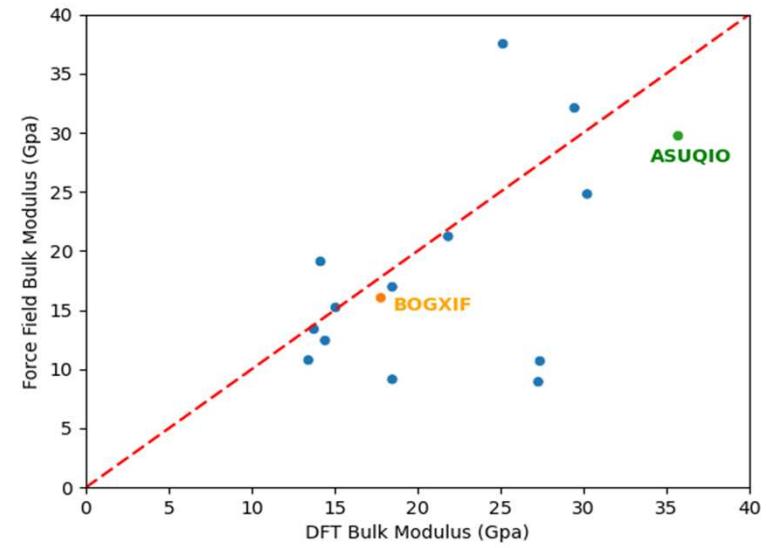
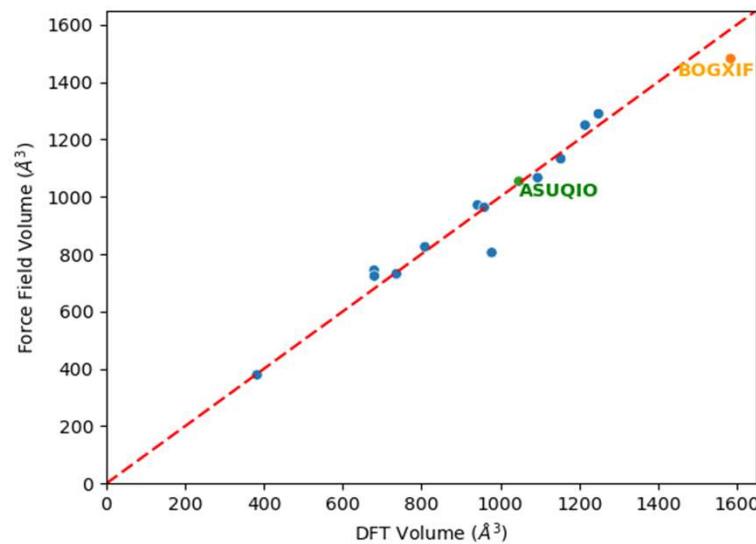
Metal Organic Frameworks

- ▶ NETL is carrying out a screening study where gas sorption behavior will be calculated for thousands of MOFs using a general flexible force field made with the help of machine learning
- ▶ The MOFs studied in the summer project are referred to as ASUQIO and MAF-2
- ▶ Both are copper MOFs containing triazole rings
 - ▶ ASUQIO has methyl substituents, MAF-2 has ethyl groups

ASUQIO

MAF-2 (BOGXIF)

Objective



- ▶ Determine accuracy of MOF calculations using rigid vs. flexible force fields
- ▶ Flexible force fields provide faster, cheaper alternative to ab initio force field methods and could provide increased accuracy relative to fixed-atom force fields (Heinen and Dubbeldam, Wiley Interdiscp. Rev. Comput. Mol. Sci., 2018)
- ▶ Force fields were generated in this project using the software QuickFF

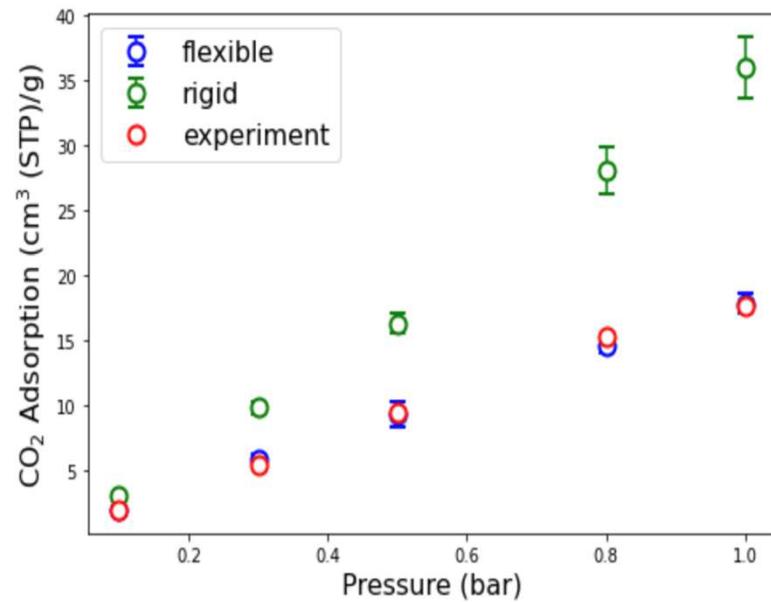
QuickFF

- ▶ Input data used was from Density Functional Theory (DFT) calculations; DFT is our “reference”.
- ▶ MOF structures were minimized using molecular dynamics simulations
- ▶ QuickFF was used to generate flexible force fields
- ▶ Force field accuracy verified by calculating equilibrium volume and bulk modulus

Comparison Between DFT (reference) and Flexible Force Field Results for Volume and Bulk Modulus

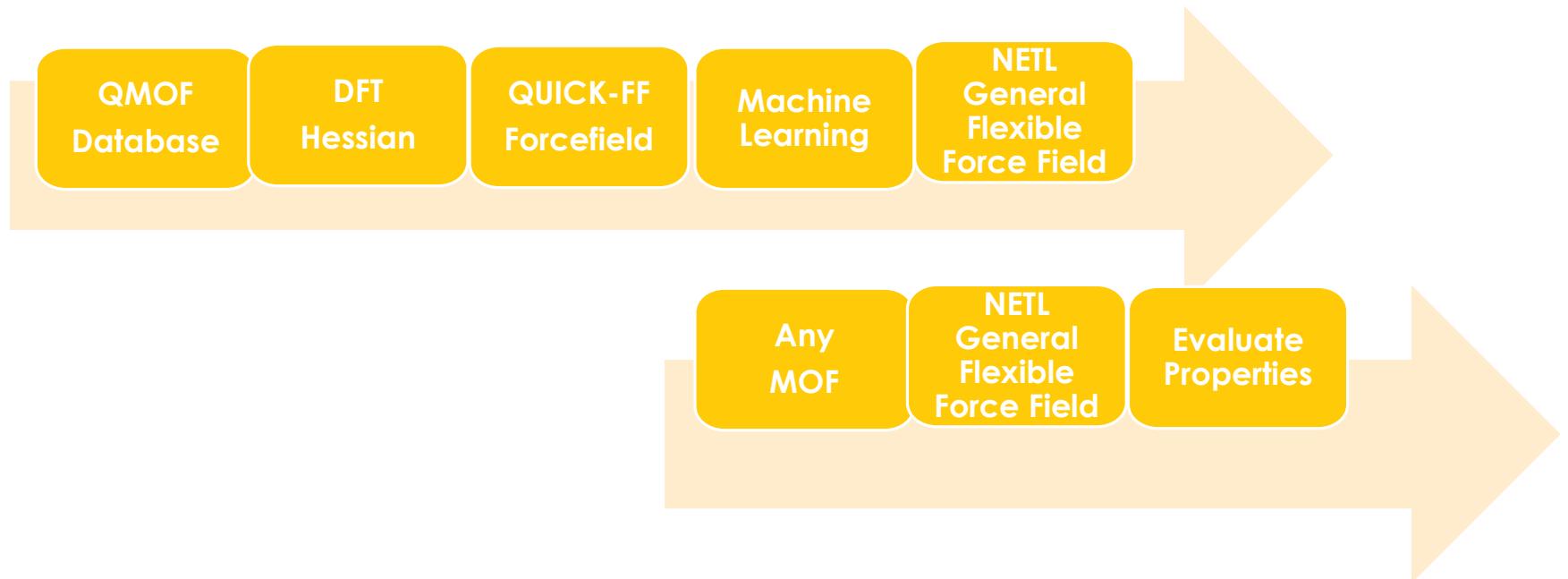
- QuickFF flexible force field reproduces the DFT bulk moduli and equilibrium volume with acceptable accuracy for a screening study

Hybrid Monte Carlo- Molecular Dynamics Simulations


- ▶ Hybrid Grand Canonical Monte Carlo (GCMC) + molecular dynamics (MD) simulations were used to determine gas adsorption properties in the MOFs
- ▶ In GCMC simulations, temperature, volume, and chemical potential of the system are fixed. Atoms or molecules are exchanged (inserted or deleted) with an imaginary ideal gas reservoir via Monte Carlo moves such as translation and molecular rotation within the simulation cell (Frenkel and Smit, Academic Press, 2002)
- ▶ In the hybrid approach, GCMC was used for insertion and deletion of gas molecules and all the atoms were moved using molecular dynamics

CO₂ Sorption Calculations

- ▶ Performed four independent simulations at five pressures, at 298K using LAMMPS software: .1, .3, .5, .8, and 1 bar
 - ▶ CO₂ molecules parameterized with TraPPE force field
- ▶ No adsorption was observed for ASUQIO, further calculations performed only using MAF-2


Results

- ▶ The flexible QuickFF force field predicted the CO₂ adsorption properties of MAF-2 with much greater accuracy than the fixed atom force field

NETL Team Machine Learning Project

- ▶ My NETL team is using machine learning to generate a **general flexible force field** for MOFs.
- ▶ The reference data for the machine learning is a collection of Quick-FF forcefields for MOFs.
- ▶ The impact of the general flexible force field will be that **properties may be evaluated for any MOF** without performing computationally expensive DFT calculations.

Student accomplishments

- ▶ My results allowed my NETL team to make a comparison between calculated and measured CO₂ adsorption for MAF-2. This MOF is a good example to use because there is a published experimental gas adsorption study on it.
- ▶ My results showed that the Quick-FF flexible force field gave a **significant improvement in accuracy** compared to the rigid forcefield. The team is using Quick-FF force fields as reference data for their machine learned NETL General Flexible Force Field for MOFs.
- ▶ I learned:
 - ▶ Skills specific to my project (Quick-FF, setting up and running Monte Carlo simulations).
 - ▶ Various coding skills such as python and bash scripting.
 - ▶ Fundamentals of molecular simulations, some principles of machine learning
 - ▶ How computational projects can accelerate the development of materials for cost effective carbon capture technologies.

Benefits

What are the benefits of your results?

- ▶ Computational screening/design of a high-performance material with tailored properties for direct air capture can enable cost-effective direct air capture.
- ▶ In addition to point source capture, direct air capture is urgently needed to prevent the worst effects of climate change.
- ▶ My team is using force fields like this in their machine learning project, so my work was helpful to my team in benchmarking the accuracy of their database.
- ▶ I am working with my NETL team to develop my results into a manuscript to be submitted to a peer-reviewed journal this fall.

References

(1) Schoedel, A.; Ji, Z.; Yaghi, O. M. The Role of Metal-Organic Frameworks in a Carbon-Neutral Energy Cycle. *Nat Energy* 2016, 1 (4), 16034. <https://doi.org/10.1038/nenergy.2016.34>.

(2) Budhathoki, S.; Ajayi, O.; Steckel, J. A.; Wilmer, C. E. High-Throughput Computational Prediction of the Cost of Carbon Capture Using Mixed Matrix Membranes. *Energy Environ. Sci.* 2019, 12 (4), 1255-1264. <https://doi.org/10.1039/C8EE02582G>.

(3) Vervoorts, P.; Schneemann, A.; Hante, I.; Pirillo, J.; Hijikata, Y.; Toyao, T.; Kon, K.; Shimizu, K.; Nakamura, T.; Noro, S.; Fischer, R. A. Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal-Organic Frameworks with Open Metal Sites. *ACS Appl. Mater. Interfaces* 2020, 12 (8), 9448-9456. <https://doi.org/10.1021/acsami.9b21261>.

(4) Zhang, J.-P.; Lin, Y.-Y.; Huang, X.-C.; Chen, X.-M. Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. *J. Am. Chem. Soc.* 2005, 127 (15), 5495-5506. <https://doi.org/10.1021/ja042222t>.

(5) Heinen, J.; Dubbeldam, D. On Flexible Force Fields for Metal-Organic Frameworks: Recent Developments and Future Prospects. *WIREs Comput Mol Sci* 2018, 8 (4). <https://doi.org/10.1002/wcms.1363>.

(6) Vanduyfhuys, L.; Vandenbrande, S.; Verstraelen, T.; Schmid, R.; Waroquier, M.; Speybroeck, V. V. QuickFF: A Program for a Quick and Easy Derivation of Force Fields for Metal-Organic Frameworks from Ab Initio Input. *J. Comput. Chem.* 2015, 36 (13), 1015-1027. <https://doi.org/10.1002/jcc.23877>.

(7) Vanduyfhuys, L.; Vandenbrande, S.; Wieme, J.; Waroquier, M.; Verstraelen, T.; Speybroeck, V. V. Extension of the QuickFF Force Field Protocol for an Improved Accuracy of Structural, Vibrational, Mechanical and Thermal Properties of Metal-Organic Frameworks. *J. Comput. Chem.* 2018, 39 (16), 999-1011. <https://doi.org/10.1002/jcc.25173>.

(8) Britannica, T. Editors of Encyclopaedia. "Bulk modulus." Encyclopedia Britannica, June 1, 2006. <https://www.britannica.com/science/bulk-modulus>.

(9) Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Computational science series; Academic Press: San Diego, 2002.

(10) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. 42.

(11) Potoff, J. J.; Siepmann, J. I. Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. *AIChE J.* 2001, 47 (7), 1676-1682. <https://doi.org/10.1002/aic.690470719>.

(12) Zhang, H.; Bucior, B. J.; Snurr, R. Q. Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. In *Modelling and Simulation in the Science of Micro- and Meso-Porous Materials*; Elsevier, 2018; pp 99-149. <https://doi.org/10.1016/B978-0-12-805057-6.00004-1>.