Calcined Polyethyleneimine-Coated Optical Fibers for Distributed pH Monitoring at High Pressures and Temperatures

SPIE Paper 13044-20

Alexander Shumski
Materials Scientist, NETL Support Contractor

SPIE Defense + Commercial Sensing 2024
April 23, 2024
This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Authors and Contact Information

Alexander Shumski1,2*; Nathan Diemler1,2; Ruishu Wright1

1National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

2NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA
Subterranean Hydrogen Storage

- **Hydrogen Storage**
 - Pure H₂ and mixed CH₄
 - Expansion of current gas storage capacity required

- **Three Well Types**
 - Depleted reservoir
 - Aquifer
 - Salt cavern

- **Thermal Gradient**
 - Temperature steadily increases with depth
 - 0.014 °F/ft or 0.026 °C/m

- **High Pressure**
 - Hydrostatic pressure
 - 0.43 psi/ft
 - High gas fill pressure
 - 1,000–3,000 psi

[1] Lackey et al. (2023)
[6] Goodman Hanson et al. (2022)
Energy Infrastructure Wellbore Conditions

<table>
<thead>
<tr>
<th>Application</th>
<th>Depth</th>
<th>Average Temperature</th>
<th>Pressure</th>
<th>pH Range*</th>
<th>Dissolved Solids</th>
<th>Common Ions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Storage</td>
<td>200-2,000 m</td>
<td>25-100 °C</td>
<td>5-35 MPa</td>
<td>3-6</td>
<td>10,000-70,000 mg/L</td>
<td>Sulfides, CO₂/Carbonate, Cl⁻, Na⁺, K⁺, H₂O⁺, Ca²⁺, Mg²⁺, Ba²⁺, Sr²⁺, Fe²⁺/³⁺</td>
<td>[3–5]</td>
</tr>
<tr>
<td>H₂ and H₂/CH₄ Blend Storage</td>
<td>200-2,000 m</td>
<td>25-100 °C</td>
<td>5-30 MPa</td>
<td>4-9.5</td>
<td>10,000-70,000 mg/L</td>
<td>Sulfides, CO₂/Carbonate, Cl⁻, Na⁺, K⁺, H₂O⁺, Ca²⁺, Mg²⁺, Ba²⁺, Sr²⁺, Fe²⁺/³⁺</td>
<td>[2–4, 7–9]</td>
</tr>
<tr>
<td>Geothermal</td>
<td>3,000-4,000 m</td>
<td>>90 °C** 150-300 °C</td>
<td>~30-50 MPa</td>
<td>Most 5-9, acidic 2.5-4</td>
<td>2,000-50,000 mg/L</td>
<td>Silicates, SO₄²⁻, CO₂/Carbonate, NO₃⁻, Cl⁻, Na⁺, K⁺, Ca²⁺, Mg²⁺, Ba²⁺, Sr²⁺</td>
<td>[10–16]</td>
</tr>
<tr>
<td>Oil/Natural Gas</td>
<td>1,000-10,000 m</td>
<td><150 °C*** <70 MPa***</td>
<td>3-9.5</td>
<td></td>
<td>10,000-200,000 mg/L</td>
<td>Sulfides, SO₄²⁻, CO₂/Carbonate, Cl⁻, Na⁺, K⁺, H₂O⁺, Ca²⁺, Mg²⁺, Ba²⁺, Sr²⁺, Fe²⁺/³⁺</td>
<td>[2, 9, 17, 18]</td>
</tr>
</tbody>
</table>

* On average, pH range is highly dependent on local geology
** For certain low temperature coupled layouts
*** Some HPHT wells are potentially much higher

- Previous sensor ranges were narrower
 - Gas storage requires at least 4-9.5
 - Cement focus was primarily 8-13
- Acid range of interest for geochemistry
 - Corrosion and microbes
- Example: Aliso Canyon, Oct–Feb 2015–2016\(^{19}\)

Old Sol Gel Process Optimized for High pH

Sol Gel TiO₂ is Dip Coated and Calcined

- Effective pH range is either 8-12 or 8-4 for TiO₂
- Cannot discriminate between pH 12 and 4 reliably

[21] https://doi.org/10.1117/12.2618836
Polyethylenimine Requires Minimal Processing

Apply Commercial Polymer Solution and Calcine

- Calcination ends solubility issues, but is not yet fully characterized

Branched Polyethylenimine

Calcination at 500 °C

pH Sensitive Carbonized Coating, Currently Undergoing Investigation

50 cm

Polymer Jacket

Multi-Mode Fiber (MMF)

Calcined Polymer Coating

Coreless Fiber

Polymer Jacket

5 cm

1 cm

50 cm

1 cm
Sensor Layouts and Experimental Setup

Two Fiber Layouts in the Same Reactor for Point and Distributed Measurements

Transmission (Point) Measurements

Distributed Measurements

<table>
<thead>
<tr>
<th>Temperature Conditions</th>
<th>Pressure Conditions</th>
<th>pH Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 °C and 80 °C</td>
<td>0 psig to 950 psig</td>
<td>2-12</td>
</tr>
</tbody>
</table>

- Transmission and Distributed Sensing
 - Forward propagating vs. backscattered light

[22] Lu, 2019
Transmission for pH Sensing at 20 °C

• Citrate buffer titration allowed for reversible sensing
• pH responds relatively linearly at slightly acidic to neutral ranges
• Basic conditions are always higher transmission than acidic
Transmission for pH Sensing at 80 °C

- Similar response to ambient temperature conditions observed
- Higher linearity observed for several responses
- Increased response from first titration (blue) to subsequent (orange/black)
Distributed Backscattering for pH Sensing at 80 °C

- Backscattering decreases at high pH alongside higher transmission
- Again, low pH range is less sensitive than the neutral to basic range
PEI Pressurization to 66 bar (950 psi) at 80 °C

- Color coding used to represent pH + pressure conditions
- Fluctuations from pressure are strong
PEI Pressurization to 66 bar (950 psi) at 80 °C

- Color coding used to represent pH + pressure conditions
- Fluctuations from pressure are strong
- Uncoated fiber does not show large pressure changes, indicating that this is coating related
Assessing Post Pressurization Stability and Damage

- pH response was maintained relatively well after retreating the fiber and attempting recalibration.
- Cracking occurs, and wrinkling produced during calcination is maintained.

Post-Pressure pH Calibration at 0 barg 80 °C and 600 nm

\[y = 6.9545x + 126.78 \]
\[R^2 = 0.93 \]
Conclusions

• A coating produced from polyethylenimine calcined at 500 °C is pH sensitive from pH 2-12, with the best sensitivity from pH 4-11

• Transmission increases with pH, and integrated backscattering decreases with pH with relatively high linearity

• Drift occurs at high pressures in the 800-1,000 psi range, but does not impact the pH sensing trends

• Coatings can be applied from commercially available solutions, requiring minimal preparation beyond calcination

• The exact composition of the calcined pH sensitive coating is currently undergoing further study
NETL RESOURCES

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT:
Alexander Shumski
Alexander.Shumski@netl.doe.gov