Bacterial Nitrate Reduction by *Paraburkholderia yinzercillus* Contributes to Iron Bioremediation in Abandoned Coal Mine Drainage

Anna Vietmeier¹,⁵*, Michelle Valkanas, PhD², Natalie Lamagna³, Quinn Hughes⁴, Djuna Gulliver, PhD⁵, Nancy Trun, PhD¹*

¹Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
²Department of Biology, Earth, and Environmental Science, PennWest California, 250 University Ave, California, PA 15419
³Center for Environmental Research and Education, Duquesne University, Pittsburgh, PA 15282
⁴Department of Biological Sciences, LaRoche University, 900 Babcock Boulevard, PA 15237
⁵National Energy Technology Laboratory, Department of Energy, 626 Wallace Rd., Pittsburgh, PA, 15236

Gordon Research Seminar
Jan. 2024
Coal-Mining in Pennsylvania

Began 1700s, unregulated until 1945

Abandoned legacy mines = Abandoned Mine Drainage (AMD)
 ~11,000 mines
 ~5,000 km of streams
 $29.1 billion recreation industry
 $15-50 billion to remediate

Soluble Metal Contamination

Iron
 Poisonous
 Associated with CA
 Increased infection risk
Boyce Park Passive Remediation of AMD

<table>
<thead>
<tr>
<th>EPA Iron Limits (PPM)</th>
<th>Mine Effluent</th>
<th>Aquatic Life</th>
<th>Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.0</td>
<td>1.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Acidic Conditions Fe(II) Oxidation Microbial Driven (Bird et. al 2011)
Microbial Iron Oxidation = Iron Bioremediation in AMD

Iron Oxidation (FeOx)

Iron Oxidation (FeOx) biotic

Iron Oxidase

Fe^{2+} \rightarrow Fe^{3+}

Nitrate Dependent Iron Oxidation (NDFO)

Nitrate Dependent Iron Oxidation (NDFO) biotic

Nitrate Reductase

Fe^{2+} + NO_3^- \rightarrow NO_2^- + Fe^{3+}

Microbial Bioremediation

↓ Contamination (+) Impact Precipitate Metals

Remediation

No Moderate High

Oxidation Loss of Electron

Reduction Gain of Electron
Iron Oxidation (FeOx) & Nitrate Dependent Iron Oxidation (NDFO) Frequency at Boyce Park

- Slurry from Boyce plated for single colonies
- Single colonies inoculated into a 96-well plate

Colorimetric ferrozine assay measures Fe$^{2+}$ + NaNO$_3$ = NDFO

- Purple = Fe$^{2+}$
- Clear = (+) FeOx/NDFO

1 well = 1 single screen
Each pond 570 screens FeOx & NDFO
Boyce System 4,560 screens FeOx & NDFO
9,120 total screens

2.1% - 11.4% FeOx in all ponds of the system
1.4% - 6.0% NDFO in all ponds of the system
Paraburkholderia yinzercillus Nitrate Reduction Concurrent Iron Oxidation

Paraburkholderia grown overnight in R2A

Inoculate into Sterile Synthetic AMD
10% R2A pH 4.0
5 mM NaNO$_3$

Increased Fe Contamination

Decreased Fe Contamination

From samples inoculated with *Paraburkholderia yinzercillus*, produce nitrite, decrease Fe(II). Bacterial growth is detected over this time period and the pH of the AMD remains acidic.

NRBO
Does not happen without NO$_3$ added
Not observed in HK *yinzercillus*
Not observed in -NR isolate

Chemical NaNO$_3$ added to Sterile AMD results in FeOx
Paraburkholderia yinzercilllus expresses *napA* during nitrate reduction

Paraburkholderia grown overnight in R2A

- Negative for NO₂
 - Addition of NaNO₃
 - Incubated until (+) for NO₂ byproduct
 - Extract RNA
 - Reverse Transcribe cDNA
 - PCR

novel *napA* and *rpoB* primer sets

Image
Nitrite Byproduct of *Paraburkholderia yinzercillus* Drives Iron Oxidation

Paraburkholderia grown overnight in R2A

- Negative for NO₂
- Addition of NaNO₃
- Incubated until (+) for NO₂ byproduct
- Filter sterilized with 0.2 μM filter

50% Filtrate

90% Filtrate

Measure soluble Fe²⁺

Ferrozine Assay

Fe(II) % change when bacterial byproduct NO₂ added

- From Day 0 to Day 7
 - S. B1 decreased by 2% ± 5%
 - 50% filtrate decreased 66% ± 8%
 - 90% filtrate decreased soluble iron by 80% ± 0%

\[n = 3 \]

Two factor ANOVA with replication

- Significant difference between groups (Sterile v. 50% v. 90%), \(p < 0.00001 \)
- Sig. diff. between days, \(p < 0.00001 \)
- Sig. diff. between the samples over time, \(p < 0.00001 \)
Burkholderiales are Present in the acidic **Boyce Park** and acidic **Middle Branch** Passive Remediation System

Classification
- **Domain**: Bacteria
- **Phylum**: Pseudomonadota
- **Class**: Betaproteobacteria
- **Order**: Burkholderiales
- **Family**: Burkholderiaceae
- **Genus**: Paraburkholderia
- **Species**: yinzercillus

ASV = amplicon sequence variant

RStudio
- **Dada2 pipeline**
- **Silva database v138.1**

Burkholderiales in all ponds
- **Boyce**: 2.80% - 9.70%
- **Middle Branch**: 3.65% - 9.97%

System sampling & MiSeq 16S by MV
Iron Oxidation in AMD

FeOx
- **Iron Oxidase**: $\text{Fe}^{2+} \rightarrow \text{Fe}^{3+}$
- **Metabolism**: Acidic, Aerobic, **Iron Oxidizers (cytochromes?)**

NDFO
- **Nitrate Reductase**: $\text{NO}_3^- \rightarrow \text{NO}_2^-$
 - **Biotic**: Neutral, Anaerobic, Undetermined
 - **Abiotic**: Geochemical
 - **Metabolism**: Acidic, Aerobic, **Nitrate Reducers (napAB)**
Conclusions

Microbes present within the acidic AMD at Boyce Park can aide in iron remediation.

Paraburkholderia yinzercilllus is capable of remediating iron via bacterial nitrate reduction chemical iron oxidation metabolism.

Novel *napA* primers indicated that the gene is expressed during nitrate reduction.

Burkholderiales are present in all ponds at Boyce Park and at Middle Branch.

Working on paper for NRFO story
Second paper for Novel *Paraburkholderia sp.*
Thank You!!

PhD Advisor
Nancy Trun, PhD

Trun Lab Present
Rowan Terra
Jill Peters
Emily Heiser
Micheala Bosworth
Alexa Lovelace

Trun Lab Alumni
Michelle Valkanas, PhD
Natalie Lamagna
Garrett Strubble
Taylor Russo
Kayla Brennan
Remy Pasterik
Pratham Patel
Andrew Stark
Quinn Hughes
Mary Claire Stark
Elura Rickard

PhD Committee
John Stolz, PhD
Jan Janecka, PhD
John Senko, PhD

NETL - Gulliver Lab
Djuna Gulliver, PhD
Kara Tinker, PhD
Preom Sarkar
Sam Flett
Meghan Brandi

David Kahler, PhD
Tetiana Cantlay, PhD
Will King, PhD
Bethann Wilson
Victoria Hrach
Emily
Cassie
Josh Robinson
Mark

I’m looking for a postdoc starting early 2025, let’s connect!!
vietmeiera1@duq.edu
vietmeiera1@gmail.com

LinkedIn
https://tinyurl.com/5b9j7zrl
CV
https://tinyurl.com/4b8uswde

Funding

DUQUESNE UNIVERSITY
School of Science and Engineering
Dept. Biological Sciences

U.S. DEPARTMENT OF ENERGY
Oak Ridge Institute for Science and Education

AMERICAN SOCIETY FOR MICROBIOLOGY
ASM Allegheny Branch

NETL
National Energy Technology Laboratory

THE GEOLOGICAL SOCIETY OF AMERICA

NASLR
National Association of State Land Reclamationists