Bacterial Nitrate Reduction Contributes to the Geochemical Oxidation of Iron and Subsequent Remediation from Acidic Abandoned Mine Drainage

Anna Vietmeier¹,⁵*, Michelle Valkanas, PhD², Natalie Lamagna³, Quinn Hughes⁴, Djuna Gulliver, PhD⁵, Nancy Trun, PhD¹*

¹Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282
²Department of, PennWest California, 250 University Ave, California, PA 15419
³Center for Environmental Research and Education, Duquesne University, Pittsburgh, PA 15282
⁴Department of Biological Sciences, LaRoche University, 900 Babcock Boulevard, PA 15237
⁵National Energy Technology Laboratory, Department of Energy, 626 Wallace Rd., Pittsburgh, PA, 15236

Geological Society of America Fall 2023
Coal-Mining in Pennsylvania

Began 1700s, unregulated until 1945

Abandoned legacy mines = Abandoned Mine Drainage (AMD)

- ~11,000 mines
- ~5,000 km of streams
- $29.1 billion recreation industry
- $15-50 billion to remediate

Soluble Metal Contamination

Iron

- Poisonous
- Associated with CA
- Increased infection risk
Boyce Park Passive Remediation of AMD

- Acidic Conditions Fe(II) Oxidation Microbial Driven (Bird et. al 2011)
 - Iron Oxidizing Bacteria (FeOB)
 - *Nitrate Dependent Iron Oxidizing (NDFO)*?

- Biogeochemical/Microbial Influence?

<table>
<thead>
<tr>
<th>Iron (PPM)</th>
<th>EPA Limits</th>
<th>Boyce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mine Effluent</td>
<td>Aquatic Life</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Bioremediation
Remediation improved through microbes

Iron Remediation in Acidic AMD

Bioremediation
Remediation improved through microbes

Microbial Bioremediation
↓ Contamination
Positive (+) Impact
Precipitate Metals
Iron Oxidation in AMD

<table>
<thead>
<tr>
<th>Iron Oxidation (FeOx)</th>
<th>AMD pH</th>
<th>Oxygen</th>
<th>Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic</td>
<td>Aerobic</td>
<td>Iron Oxidizers (cytochromes?)</td>
<td></td>
</tr>
</tbody>
</table>

1. Fe²⁺ → Iron Oxidase → Fe³⁺

Neutral Nitrate Dependent Iron Oxidation (n-NDFO)

<table>
<thead>
<tr>
<th>Neutral Nitrate Dependent Iron Oxidation (n-NDFO)</th>
<th>pH</th>
<th>Anaerobic</th>
<th>Meteorism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>Anaerobic</td>
<td>Undetermined (cytochromes? napAB?)</td>
<td></td>
</tr>
</tbody>
</table>

1. Fe²⁺ → Iron Oxidase → Fe³⁺

2. NO₃⁻ → Nitrate Reductase → NO₂⁻

Acidic NDFO (a-NDFO) / Nitrate Reduction indirect Iron Oxidation (NRiFO)

<table>
<thead>
<tr>
<th>Acidic NDFO / Nitrate Reduction indirect Iron Oxidation (NRiFO)</th>
<th>pH</th>
<th>Anaerobic</th>
<th>Meteorism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic</td>
<td>Aerobic</td>
<td>Nitrate Reducers (napAB)</td>
<td></td>
</tr>
</tbody>
</table>

1. NO₃⁻ → Nitrate Reductase → NO₂⁻

2. Fe²⁺ → Fe³⁺

1. Fe²⁺

2. NO₃⁻
Frequency of **Iron Oxidation (FeOx)** & **acidic Nitrate Dependent Iron Oxidation (a-NDFO)** at Boyce Park

Single colonies inoculated into a 96-well plate

Ferrozine assay measure Fe$^{2+}$

Each pond screened

- 570 FeOx
- 570 NDFO

Boyce System 9,120 screens

- **193 FeOx positive** / 4,560 FeOx screens
- **125 a-NDFO positive** / 4,560 a-NDFO screens
Identification of NRFO Bacterial Isolates as *Paraburkholderia sp.*

<table>
<thead>
<tr>
<th>NDFO Isolate</th>
<th>16S rrn % Identification</th>
<th>Iron Oxidation</th>
<th>Nitrate Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18</td>
<td>100% Paraburkholderia sp¹</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>AV25</td>
<td>99% Paraburkholderia sp²</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>AV26</td>
<td>99% Paraburkholderia sp²</td>
<td>(+)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

1. Whole genome sequencing of NRFO bacterial isolate AV18
2. Sanger sequencing ID NRFO bacterial isolates AV25 and AV26
Bacteria *Paraburkholderia sp. AV18* Nitrate Reduction
Concurrent Iron Oxidation

Paraburkholderia sp. AV18
Sterile AMD
Addition of **Nitrite** Causes **Iron Oxidation** in AMD

Spike NO₂

NO₂
Sterile AMD
Test Ability of Filtrate (+) NRFO from *Paraburkholderia sp. AV18* to Drive FeOx Abiotically

100% Sterile AMD
50% Filtrate
90% Filtrate

1st (+) NRFO Experiment

Paraburkholderia sp. AV18

\[\text{NO}_2^- \rightarrow \text{Fe}^{2+} \]

DAY 0

DAY 4

Filter Sterilize (+) NRFO

Nitrite Byproduct of *Paraburkholderia sp. AV18* Drives Iron Oxidation
cDNA Confirmation that *napA* is Expressed During Nitrate Reduction

1. Grow *Paraburkholderia sp. AV18* (-) Nitrate (NaNO₃)

2. (+) 10 mM NaNO₃⁻

3. Measure NO₂⁻ Production
 - -1 m
 - 30 m
 - Negative (-) NO₃⁻ Reduction to NO₂⁻
 - Positive (+) NO₃⁻ Reduction to NO₂⁻

4. Concurrently Extract RNA over Time

5. Reverse Transcribe (RT) RNA into cDNA

6. RT-PCR

Table:

<table>
<thead>
<tr>
<th></th>
<th>napA⁺</th>
<th></th>
<th>rpoB⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Ladder</td>
<td>-1</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Time (m)</td>
<td>-1</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Image:

DNA ladder gel showing bands for each time point.
Conclusions

Microbes present within the acidic AMD at Boyce Park can aide in iron remediation.

Paraburkholderia sp. AV18 is capable of remediating iron via bacterial nitrate reduction *indirect iron oxidation (NRFO)* metabolism.

Novel *napA* primers indicated that the gene is expressed during nitrate reduction.

Working on paper for NRFO story
Second paper for Novel *Paraburkholderia sp.*
Thank You!!

PhD Advisor
Nancy Trun, PhD

Trun Lab Present
Rowan Terra
Jill Peters
Emily Heiser
Micheala Bosworth
Alexa Lovelace
Elura Rickard

Trun Lab Alumni
Michelle Valkanas, PhD
Natalie Lamagna
Garrett Strubble
Taylor Russo
Kayla Brennan
Remy Pasterik
Pratham Patel
Andrew Stark
Quinn Hughes
Mary Claire Stark

PhD Committee
John Stolz, PhD
Jan Janecka, PhD
John Senko, PhD

Gulliver Lab
Djuna Gulliver, PhD
Kara Tinker, PhD
Preom Sarkar
Sam Flett
Meghan Brandi

David Kahler, PhD
Tetiana Cantlay, PhD
Will King, PhD
Bethann Wilson
Victoria Hrach
Josh Robinson

I’m looking for a postdoc starting Summer/Fall 2024, let’s connect!!

vietmeiera1@duq.edu
vietmeiera1@gmail.com

LinkedIn
https://tinyurl.com/5b9jfzrf
CV
https://tinyurl.com/4b8uswde