A Techno-Economic Survey of Energy Storage Media for Long-Duration Energy Storage Applications

Lee Aspitarte, PhD
NETL Support Contractor

2023 Thermal-Mechanical-Chemical Energy Storage Workshop
Aug. 2-3, 2023
Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Lee Aspitarte1,2, Rigel Woodside1

1National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA

2NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA
Current U.S. Energy Storage Capacity

Cross-Referencing Sandia Global Energy Storage Database and EIA Data
Techno-Economic Analysis

Levelized Cost of Storage (LCOS) for Coupled and Decoupled Storage Media

Separation between

- Power Conversion System (PCS)
- Energy Storage Media (SM)

- Coupled or Decoupled energy capacity \((Cap_E) \) and power capacity \((Cap_P) \).
- Coupled SM have a limited nominal discharge duration

\[
DD_{nom} = \frac{\eta_d Cap_E}{Cap_P}
\]
Collected the Energy Capital Cost of the Storage Medium Materials, $C_{kWh,SM}$, of a Broad Range of SM

- Identified SM technologies and energy density (ρ_E) expressions from first-principles
- Developed a data collection framework to collect ρ_E data and materials prices C_{mat}.
- Used data to calculate material cost floor of C_{kWh},

$$C_{kWh,SM}[USD/kWh] = \frac{C_{mat}[USD/kg]}{\rho_E[kWh/kg]}$$
\(C_{kWh,SM} \) Data for all SM

Lines are rough guidelines for long-duration energy storage (LDES) applications identified from literature.
Individual Promising SM

Sensible Thermal, Latent Thermal, and Thermochemical

Coupled and Decoupled Chemical
Acknowledgments

This work was performed in support of the U.S. Department of Energy’s Fossil Energy and Carbon Management’s Cross Cutting Energy Storage Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center’s Energy Storage Field Work Proposal.
NETL

RESOURCES

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory