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Introduction
By using intelligent analytic techniques such
as text analytics, machine learning,

predictive analytics, data mining and so on,
big data analysis provides a fast and effective
pathway to evaluate massive amount of data
sets from different sources. This analysis
helps to uncover hidden patterns,
correlations and other insights, and it guides
future studies in different fields. Waste
plastic recycling/upcycling technologies have
been developed for many decades. There is a
tremendous number of technical papers/
reports/patents in this field. However, there
is still no effective way to anticipate and
predict the technology for the future .

In this study, we attempt to offer a “big-
data” tool that explores emerging trends in
waste plastic recycling/upcycling
technologies and provides useful insight for
future study. Approximately 10,000 papers
related to waste plastic recycling/upcycling
technologies in the past 60 years were
analyzed using a python-coded program with
natural language process tools. The most
frequently used technical terms in title,
abstract and main manuscript will be listed
via a complete text statistics analysis. Careful
mining of these data can reveal many useful
indicators of waste plastic recycling/
upcycling technologies, which can help in
understanding their growth. This study

provides a great opportunity for researchers
to utilize this data for developing useful
knowledge and insights.

Methodology
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¢ Over 800,000 papers for a “general” database based on
' “plastic” or “polymer” search from Web of Science

* Compiled around 9,000 “highly cited” Web of Science
articles from 2012-2022 for second database to
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Results and Discussions
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e Attentions on thermal treatments (pyrolysis and
gasification) with polyethylene began in the 1990s and
catalyst ramped up in the 2000s.

Future Plan
Incorporating machine learning (ML) with the existing big
data tools can allow computers to learn and infer future
trends without as much user input.

Thermal treatments (pyrolysis and gasification) and catalyst with
polyethylene have gained lots of attentions since 1990
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