

Value of LCA and its Applicability to Natural Gas Analysis

James Littlefield Associate

Booz | Allen | Hamilton

June 18, 2014

DOE/NETL-2016/1782

Agenda

- Value of an LCA perspective
- Upstream natural gas
- Current natural gas research

LCA is well suited for energy analysis

- Draws a more complete picture than one focused solely on stack or tailpipe emissions
- Allows direct comparison of dramatically different options
- Includes methods for evaluating a wide variety of burdens

NETL approaches each LCA systematically to ensure comparability and transparency

 Compilation and evaluation of the inputs, outputs, and potential environmental impacts of a product or service throughout its life cycle, from raw material acquisition to final disposal

- Ability to compare different options depends on functional unit (denominator)
 - 1 kWh of electricity delivered to the end user
 - 1 MJ of fuel combusted

LCA shows the importance of each portion of the life cycle

- Coal Extraction
 Coal Transport
 Power Plant Construction
 Natural Gas for Aux Boiler
 Plant Operations
 T&D
- Coal Extraction T&D
 Coal Transport T&D
 Power Plant Construction T&D
 Natural Gas for Aux Boiler T&D
 Plant Operations T&D

LCA answers are sensitive to the question asked

- How does a given technology compare to other options?
 - Narrow boundaries and attributional results
 - Example: Life cycle emissions from 1 MWh of electricity from NGCC vs. SCPC power
- How will a given policy affect an entire system?
 - Broad boundaries and consequential results
 - Example: Changes to global energy supply and associated GHG emissions if U.S. exports liquefied natural gas (LNG)

Potential trade-off between usefulness and uncertainty

The more complete the picture, the more uncertain it becomes

Unconventional sources of natural gas are changing the resource profile of the U.S. natural gas supply

- Total U.S. natural gas consumption was 26 Tcf in 2012 and is projected to grow to 32 Tcf by 2040¹
- Unconventional sources of natural gas are a growing share of U.S. production
- LCA is well suited to analyze the effect of shale gas growth on the environmental profile of natural gas systems

Life Cycle of Natural Gas through Power

Comparison of Published Results

Our upstream natural gas model is an important component of our power LCAs

Parameters allow flexibility, which allows scenario, uncertainty, and sensitivity analysis

Property (Units)	Onshore	Associated	Offshore	Tight Gas	Barnett Shale	Marcellus Shale	СВМ
Natural Gas Source							
Contribution to 2010 U.S. Domestic Supply	22%	6.6%	12%	27%	21%	2.5%	9.4%
low	46	85	1,960	77	192	201	73
Average Production Rate (Mcf /day) expected	66	121	2,800	110	274	297	105
high	86	157	3,641	143	356	450	136
Expected EUR (Estimated Ultimate Recovery) (BCF)	0.72	1.32	30.7	1.20	3.00	3.25	1.15
Natural Gas Extraction Well							
Flaring Rate (%)	51% (41 - 61%)			15% (12 - 18%)			
Well Completion (Mcf natural gas/episode)	47			3,600	9,000	9,000	49.6
Well Workover (Mcf natural gas/episode)	3.1			3,600	9,000	9,000	49.6
Lifetime Well Workovers (Episodes/well)	1.1			0.3			
Liquid Unloading (Mcf natural gas/episode)	3.57	n/a	3.57	n/a	n/a	n/a	n/a
Lifetime Liquid Unloadings (Episodes/well)	930	n/a	930	n/a	n/a	n/a	n/a
Valve Emissions, Fugitive (lb CH ₄ /Mcf natural gas)	0.11		0.0001	0.11			
Other Sources, Point Source (lb CH ₄ /Mcf natural gas)	0.003		0.002	0.003			
Other Sources, Fugitive (Ib CH ₄ /Mcf natural gas)	0.043		0.01	0.043			

- Parameters include expected values and uncertainty/variability ranges
- Similar level of parameterization is used for processing and pipeline transmission

Our model accounts for natural gas lost as fugitives, through environmental controls, and as upstream fuel

Fugitive Emissions

- Cannot be practically recovered by control technologies
- Examples: pneumatic or flange leaks

Controllable Emissions

- Can be reduced by using capture equipment
- Venting releases CH₄ and flaring converts
 CH₄ to CO₂
- Examples: flowback emissions or venting from acid gas removal

Natural Gas Use

- Natural gas is used as a fuel in processing and transmission equipment
- CO₂ emissions result from fuel combustion
- Examples: processing reboilers or gaspowered compressors

We can model the overall properties of a mix of gas sources

- NETL's cradle-to-delivered leakage rate is 1.2%
- NETL's extraction leakage rate is 0.44%, which is close to leakage rates measured by EDF and University of Texas¹

We can zero in on dynamics of specific scenarios

- Our *reduced methane* scenario is based on NSPS rules and uses best practices to reduce completion, valve, and compressor emissions at extraction and processing.
- Best practices for natural gas extraction and processing can reduce GHG emissions from new or modified Marcellus Shale wells by 29%.

We can calculate results across a performance range

- Intersections of natural gas and coal are breakeven points
- This is a bounding analysis that accounts for extremes
- Our calculated leakage rates are well below the breakeven leakage rates

We can reconcile our results with other authors and validate alternative methods

■ Fleet Conversion TWP Crossover Range

- Alvarez¹ uses technology warming potential (TWP) to compare climate impacts
- Applying TWP to NETL's natural gas model yields results similar to Alvarez's results
- If the leakage rate is 3% or less, natural gas power will always have a lower cumulative radiative forcing than coal power

¹ Alvarez et al. "Greater focus needed on methane leakage from natural gas infrastructure." Proceedings of the National Academy of Sciences (2012)

Our model has been a key part of the NG discussion

Top 10 research and data collection needs

- 1. Regional variation in gas composition
- 2. Estimated ultimate recovery (EUR)
- 3. NSPS implementation
- 4. Pipeline compressor leakage and efficiency
- 5. Completion and workover emissions
- 6. Workover frequency
- 7. Flaring rates
- 8. Fugitive emissions at extraction
- 9. Non-GHG emissions (VOCs) from extraction
- 10. Water use for hydrofracking

Contact Us

Timothy J. Skone, P.E.

Senior Environmental Engineer • Strategic Energy Analysis and Planning Division • (412) 386-4495 • timothy.skone@netl.doe.gov

Joe Marriott, Ph.D.

Lead Associate • Booz Allen Hamilton • (412) 386-7557 • joseph.marriott@contr.netl.doe.gov

James Littlefield

Associate • Booz Allen Hamilton • (412) 386-7560 • james.littlefield@contr.netl.doe.gov

