TEA of the CO₂ Capture Process in SMR-CCS Applications

Rui Wang ^{a,b}, Husain E. Ashkanani ^{a,d}, Wei Shi ^{a,c}, Nicholas S. Siefert ^a, Robert L. Thompson ^{a,c}, Kathryn Smith ^{a,b}, Janice A. Steckel ^a, Isaac K. Gamwo ^a, David Hopkinson ^a, Victor A. Kusuma ^{a,c}, and Badie I. Morsi ^{a,b}

a U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15236, USA b Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA c Leidos Research Support Team, National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, USA d Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait Email: morsi@pitt.edu, Website: http://www.pitt.edu/~rapel/

Table 1: Shifted SMR fuel gas¹

Pressure, bar	24.5	
Temperature, °C	204	
Molar flow rate, kmol/h	19,519	
Mass flow rate, kg/h	<u>240,</u> 967	
Composition	Mol%	Mass%
H ₂	60.01	9.80
CH₄	4.11	5.34
CO	0.40	0.91
CO ₂	15.17	54.07
H₂O	20.00	29.18
N ₂	0.31	0.70
Total	100.00	100.00

Solvent Used: CASSH-1 (Diethyl Sebacate) Hydrophobic and Non-corrosive

Figure 2: Chemical structure of CASSH-1

PC-SAFT EOS in Aspen Plus V12.1

In this study, a physical solvent diethyl sebacate (DES) (Figure 2) was used for CO_2 capture. The physical properties of DES, including, density, viscosity, surface tension and heat capacity, were obtained and regressed in Aspen Plus V12.1. Also, the solubilities of CO_2 , H_2 , CH_4 and N_2 in DES were measured and modeled using the PC-SAFT Equation-of-State (EOS) in Aspen Plus V12.1. The predicted solubility values were also validated against the experimental data in Figure 3.

References

[1] COMPARISON OF COMMERCIAL, STATE OF THE ART, FOSSIL BASED HYDROGEN PRODUCTION **TECHNOLOGIES, April 12, 2022. DOE/NETL-2022/3241**

The objective of this study is to design a novel process in Aspen Plus V12.1 packed with a structured packing (Mellapak 250Y) for CO_2 capture from fuel gas streams of an SMR-CCS process using a DES in a counter-current fixedbed absorber The specific area of this packing (a) is 256 m⁻¹. The schematic of the novel CO_2 capture process is shown in Figure 4.

The constrains imposed on the process were: (1) no flooding in the absorber and the packing height (H) to the absorber diameter (D) ratio (H/D) is \geq 6, (2) the CO₂ capture efficiency is \geq 97 mol%, and (3) the CO₂ stream intended for sequestration has a water content of < 600 ppm, and a fuel gas (CH₄, H₂, and CO) content of < 0.5 mol%. The solvent flow rate and CO₂ absorber dimensions were varied to meet the process constraints. The process hydraulics (pressure drop, liquid holdup, and flooding) and mass transfer characteristics (liquid-side (k_L) and gas-side (k_G) mass transfer coefficients, and the normalized specific packing wetted area (a_w/a) were obtained. Also, a detailed techno-economic analysis (TEA) of the CO_2 capture process in terms of the capital expenditure (CAPEX), operating expenditure (OPEX) and levelized cost of CO₂ captured (LCOC) was performed. The LCOC was calculated as follows:

$LCOC = \left(\frac{f_{CR}}{f_c}\right) \sum (CAPEX_{2020})/\dot{m}_{CO2} + OPEX$	2020/ <i>m</i> c02
$f_{cn} = \frac{i(1+i)^N}{1-i(1+i)^N}$	Parameter
$(1+i)^N - 1$	Cost of electri

 f_{CR} = Capital recovery factor, 1/year $f_{c} = Capacity factor = 0.8$ \dot{m}_{CO2} = CO₂ captured, 4.793 ton/h N = project lifetime, 30 year i = discount rate = 10%/yearCAPEX = capital expenditure, \$**OPEX = operating expenditure, \$/year**

Daramatar	Va	
Parameter	2019	
Cost of electricity	\$50/MWh	
Cost of steam	\$6.46/ton	
CEPCI*	590	
i	10%	
N	3 0 y	
fc	C	
f _{O&M}	4% of the Tota	
f _{CR}	0.1	

lue		
2023		
\$83.3/MWh		
\$6.21/ton		
800.7		
/year		
/ears		
.8		
I CAPEX, \$/year		
0608		

Figure 4: Schematic of CO₂ capture process

The process began with knocking off the water vapor from the shifted fuel gas stream using a water separator at 38 °C and 24.5 bar. To increase the CO_2 partial pressure in the shifted fuel gas stream, a compressor was used to boost the total pressure of the water-free fuel gas from 24.5 bar to different discharge pressures (49 bar, 61 bar, 73.5 bar, 97 bar, 98 bar, 99 bar, 110 bar, and 122.5 bar). Hence, the effects of the gas compression ratio on the process hydraulics, mass transfer, and TEA (CAPEX, OPEX, and LCOC) were investigated at 2019 and 2023 (Figure 5).

Concluding Remarks:

(1) In 2023, the lowest LCOC was 59.04 USD per ton of CO_2 captured at a compressor discharge pressure of 97 bar, and the corresponding CAPEX and OPEX values were 63.97 million USD and OPEX of 55.10 million USD per year, respectively; (2) At 97 bar, the total pressure drop was 12 mbar, and the average liquid-phase holdup was 27.8%; (3) The average k_L , k_G , and a_w/a were 2.15E-4 s⁻ ¹, 1.86E-2 s⁻¹, and 63.4%, respectively; and (4) The mass transfer data indicating that the process was mainly controlled by (k_1) since the liquid-side resistance to mass transfer $(1/k_1)$ is much greater than that of the gas-side resistance $(1/k_c)$.

Acknowledgemen

This technical effort was funded by and performed in support of the US Department of Energy's Office of Fossil Energy & Carbon Management (FECM) Precombustion Carbon Capture program, DE-FECM 1611056. The research was conducted across multiple years through the NETL Research and Innovation Center's Transformational Carbon Capture field work proposal (FWP) and Point Source Capture FWP." Disclaimer

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TIONAL TECHNOLOGY ABORATORY