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This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United States
Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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e Introduction / Motivation
* DOE Program Objectives / Activities
* NETL-RIC Project Objectives

* Results / Analysis

* Summary
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* Constant volume combustion offers greater

70 I | | | |
thermodynamic availability than constant el Hugonio
pressure combustion 5 Subsonic Rayleigh Line —UCJ, ZND
§ 50 Heat Addition cv

* 4.9% increase in GT Efficiency (LHV)

* 1.8% increase in Net Plant Efficiency (NGCC with H-Class
RDE-GT Hybrid)

* Alternate and additive pathway to efficiency
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* Combine greater work availability to conventional AS "I"
approach to efficiency gains through higher turbine inlet OF hos— <
temperatures. Ambient
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Entropy, (S-Sref)/Rreac

H-S diagram comparing constant pressure
combustion (Brayton) cycle to near-
constant volume combustion (Humphrey)
cycle.

* Hydrogen utilization

* Offers potential for distributed power and
Alternative Energy integration
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DOE PGC Program Objectives (R ocy

* Gas Turbine Integration

. Sequence of still images showing

through the 2D cascade test rig.

* PGC is inherently unsteady

) . Rasheed et al. (2004),
* Unsteady flow in the combustor can impact both the https://doi.org/10.2514/6.2004-

compressor and turbine performance. 1207

e Mechanical concerns

300 slpm air, no He flow

* Fuel-oxidizer mixing '
. o . o . © @
* High turbine inlet Mach numbers are not compatible with industrial

turbines.

Upstream propagation of shock
. waves in a RDE radial injector

* Properly characterize cycle benefits
Bedick et al. (2017),
https://doi.org/10.2514/6.2017-
0785

* Hydrogen-Air Combustion
* Combustion stability

NETL Lab-Scale RDE Inlet Sector

* NOx formation pathways Rig
* High heat flux can pose a challenge for component cooling
* Cooling air injector at higher pressurer?
* Alternative power cycles Noples e, AAA 2007 1087
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Pl: Dr. Mirko Gamba (Dr. Venkat Raman [Co-Pl])

* Fuel Injection Dynamics and Composition Effects

ori (%(i;ating Detonation Engine Performance (2017

* Detonation wave — injector dynamics, mixing

* Pressure Gain, Stability, and Operability of
Methane/Syngas Based RDEs Under Steady and
Transient Conditions (2019 — 2022)

* Quantitative description of the loss mechanisms
* Characterize metrics for evaluating performance gains

* Machine learning based approach to combustion
modeling and GPU-accelerated solvers (DOE
Office of Advanced Scientific Computin
Research’s Leadership Computing Challenge —
ORNL Summit Supercomputer)

U.S. DEPARTMENT OF

Fig. 3 Estimation of average heat release during a RDE cycle using OH emissions.[7]
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Fig.1 Schematic diagram of (a) narrow and (b) wide channel RDC
flow-paths. The two configurations differ only by the inner wall
contour.
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Back-
* A Robust Methodology To Integrate Rotating o
Detonation Combustor With Gas Turbines To
Maximize Pressure Gain (2021 — 2024)
* Optimized RDC-Diffuser design for improved turbine oy
integration
* RDC Channel area profiling to improve detonation stability and
performance Diffuser
* Quantity the impact of loss mechanisms in the combustion
process associated with non-ideal mixing, mixed mode
combustion (deflagration/detonation), and wave RDC
mode/numbers in the RDC with a

contoured
nozzle
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* Physics-Based Integration of H2-Air Rotating Detonation into Gas
Turbine Power Plant (2021 - 2024)

* Objectives
« improve turbine overall work extraction with a diffuser-turbine efficiency of 90%
« Air dilution of 100% or less
* Minimize heat fluxes
« Ensure adequate damping to the rotating blades

Scope of Work

* ldentify the scaling parameters that emulate the RDC outlet
conditions to enable TRL2/TRL3 testing

e Design and assessment of an optimized axisymmetric
diffuser under pulsating flow

e Optimization and assessment of an industrial turbine vane
under pulsating differ exit flow

Integration of diffuser-vane in
optical accessible RDC

.S. DEPARTMENT OF
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Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and

Turbine Components at 7FA Cycle Conditions (2022 — 2026)

eciran Y

GE

@ Research

Deep expertise:

* RDC and gas turbine
design

» Gas turbine testing

» Compressor/diffuser
aero

« Turbine aero

» Cooling design, heat
transfer

Computational
Combustion and Aero
UNIVERSITY OF

MICHIGAN
Prof. Raman

Measurements
and Diagnostics

UCF

Prof. Vasu

Prof. Steinberg

119 NC STATE UNNERSITY

\
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Project Deliverables
Low-loss RDC design for turbine integration
Experimental demos of compressor and turbine integration
Turbine and compressor component performance estimates

LABORATORY

An 48-month, $8.75M project to develop and demonstrate

rotating detonation combustion (RDC) technology
in an integrated gas turbine system.
Project Objective(s): Develop low-loss rotating detonation combustor,

integrate with upstream and downstream turbomachinery components
and verify overall systems performance at F-class turbine conditions.

in integrated system from detailed test and measurement
RDC-integrated GT performance estimates %

~

Relevant Prior Work
Air-cooled RDC demonstration
RDC operation on natural gas at elevated T,P
Preliminary gas turbine integration design
RDC performance estimates
USAF RDC Program

Technical Approach

« Design air-cooled RDC

« Test with Nat-gas H2 mixtures

» Integrate with compressor and turbine
« Test integrated system

« Verify performance based on

Technical Challenges

+ RDC operation over large PT range
« Low-loss RDC inlet design
» Fuel flexible operation

« Unsteady flow effects on compressor
and turbine performance

| high-fdelity data
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* Improve fundamental understanding stable continuous wave
detonation

* Wave directionality, bifurcation, translation speed (~CJ)

* Det / shock wave influence on operational parameters (i.e fuel
injection/mixing, combustion stability)

NETL Characterization of Injector Response using Acetone PLIF

* Maximize pressure gain / turbine work availability and
reduce emissions

* Inlet / exhaust transition configuration for turbine integration

* Reduce parasitic losses from deflagration

o COIltI‘Ol NOX emissions Varying the Fuel / Oxidizer injection schemes and sizes
2500003 AN
' 33003
317er03
° ege o 300e003
° Improve modehng capablhtles §Z§!133 Temperature contours
. . . 53553 : from simulation of RDE
* Simultaneous detonation and deflagration (turbulent e operating on H2-Air

. 1.880+03
combustion model) i

5300002
Ber 02

(NETL).

368e002
2.00e+02
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[ ]
TaSkS % Low-order (CONVERGE/Fluent) and High-order (Nek5000/nekRS) CFD codes § «
. . . ""G Q Lé.\
* Analysis of Injector Design 1 l £3
=
Effects on RDE Parasitic {5 — 55
R §9
. < 2 g
Combustion < 5 I I I [ i
. . < Effects of injector Impact of ignition Assessment of Analysis of TCI and 13
° IIIVCSUgatIOIl Of thC ImpaCt Of design on parasitic mechanism on turbulent wall boundary
.. . combustion detonation wave combustion models layer effects
RDE Ignition Mechanism on behavior
Figure 1: Overall proposed joint Argonne-NETL research effort on hydrogen-fueled RDE.
Detonation Wave Behavior

* Exploring Turbulent Combustion Models for Predictive and Computationally-efficient

RDE CED Simulations

* Argonne will test a CEMA-based dynamic adaptive combustion model [14] which assigns either FRC
or unsteady flamelet progress variable (UFPV) or inert mixing model to the local mixture depending
on the local combustion regime identitied by CEMA.

* High-order Nek5000 CFD Framework for Scale-Resolving Simulations of RDEs and
analysis of TCI and wall boundary laver effects

U.S. DEPARTMENT OF
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Research Activities

Milestones Go / No-Go
1. Develop advanced diagnostics utilizing computer vision and machine learning (07/31/2021). 1. Installation of High-Temperature / Pressure Gas Cell (HTP Cell) in NETL-PIT
2. The impact of long-duration versus short-duration testing on experimental studies of RDEs. (5/31/2022) Fundamental Combustion Laboratory (05/31/2022)
3. Complete / Document installation of axial air injection scheme and exhaust diffuser in water-cooled RDE. 2. Complete installation of an atmospheric optical RDC in NETL-Morgantown

(05/31/2022)

4. Quantify heat flux in the high-pressure, water-cooled RDE. (08/30/2022)

5. Experimental and computational characterization of several advanced inlet designs using a combination of
experimental studies and computational modeling (12/31/2022)

6. Exhaust flow with diffuser characterization in optical RDE (05/31/2023)

7. Develop experimental capabilities for exploration of RDCs with DPE cycles. (10/31/2023)

Deliverables Value Delivered

(8/30/2022)
3. Develop seeding system for optical RDE to facilitate PIV and LDV. (12/31/2022)

1. Documentation of axial air injection and thermally stable operation * Increased NETL experimental capability
(05/31/2022) * Provide insight to heat flux in RDE for research community.

2. Thin-file heat flux and water calorimetry to characterize heat transfer * Provide research community insight to develop/design process for low-loss
(08/30/2022) injector geometry.

3. NOx formation in detonation (10/31/2022) * Characterize NOx formation mechanisms that occur in RDE compared to

4. Experimental / Computational characterization of low-loss injectors conventional deflagration.

U.S. DEPARTMENT OF




Experimental Facility

48 &% Refractory-Lined

Exhaust Duct

Cooled
Exhaust Duct

Slip-stream .~ tM
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Operating Conditions
Fuels: H2 and/or Natural Gas
air flow rate @ 600 K — 1 kg/sec

Max. shell T, P = 477K, 16 Bar
Cooling: water @ 150 Ipm, 11 Bar

L
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Injector / Combustor Geometry T LABORATORY

Pintle injector Fuel/Air Combustion
RDE Geometric Parameters Injection Annulus Instrumented
Geometry Geometry Guide Vane
Comb-injector Length Comb Length
{L1)-mm 1335 {L2)-mm 962
Comb inner Diameter
{Di_3.2)-mm T
Comb Outer Diameter Combustor Chamber
{00_3.2)-mm i Area (A3.2HmmA2 a4zl
comb Exit inner Centerbody Exhaust Diffuser
Diameter (Di_8}-mm 1335
Comb Exit Outer Exit Nozzle Throat
- 1488 3371
Diameter ([Do_5)-mm Area (AB)-mmAa2
Area Inlet AMinimum Fuel inlet AN nimum
1262 108 9
Area (A3.1)-mmn2 Areg-mmA2
A3.1/A3.2 0.285 AB/A32 0.762

Air Injector | A3.1/A3.2 | A8/A3.2
Ga Size (mm

A3.1/A3.2 | A8/A3.2 0.06
0 79 0.09 10
0.28 0.76 | 175 | 75 0.2 '

0.32
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Instrumentation and Test Condi*” i | i LABORATORY
Air Mass Flux s , o - =
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NETL Water-Cooled, High Pressure RDE

Modal Transitions
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Time [s]
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NETL images

. 100
* Train convolutional neural o :
network (CNN) on large pool 1CCW - : .
of images with multiple modes g B 0
e Utilize CNN to predict wave el D 0
mode (wave number and = ow 0
direction of rotation) from a § ccw - 8
single image Y i | B
* Machine vision approach is oSS T oo N B
being combined with I xR{4 1 0 o 1
conventional instrumentation 1 B T s n
ot 3 - —L 0

(p’) to add instantaneous wave
speed.

o \c,(’$ WC:\ mcé\ £ ,,;,Cxx S LS
Predicted Classification
FIGURE 16: Nommalized confusion matrix of extended dataset
containing counter-rotating waves and deflagrative behaviors
- 2

FIGURE 15: Downstream images of additional modes (A) 1CR. (B)
2CR. (C) 3CR. and (D) Def

#2128 Y-S DEPARTMENT OF Johnson, Kristyn B, Donald H Ferguson, Robert S Tempke, and Andrew C Nix. “Application of a Convolutional Neural Networ
g EN ERGY Identification in a Rotating Detonation Combustor Using High-Speed Imaging.”, GT2020-15676 In ASME 2020 Turbo Expo. Vi
: Turbo Expo, 2020.

Purdue images
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Data Image
* Initialization steps

SqueezeNe
1. SqueezeNet Model pre-loaded

* Data acquired and managed in
Python

2. Connection to camera and cDAQ g Sl
3. Empty variables nitialized i S
* Iterative steps i s Bl
1. Camera triggered by Pylon oo
2. lon probe data read through PyDAQ
3. Classification and calculation ' | ::o,__. RN
4. Diagnostic output plotted : ] v H E e Em
: § on il Fo .

0 2 4 6 8 b o W % 0 2 4 6 8 0 D u B
U.S. DEPARTMENT OF Iteration Time (sec) Time (sec)

0 2 4 6 8 10 2 M 16
Time (sec)




Computer Vision Object Detection applied to High- N=|anona.
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* Wave profiles offer intensity features

suggesting wave direction \
* Features can’t be “hard-coded” "5
* Convolutional Neural Networks \ [T M= D —— .

v — i\ : g
(CNN) can perform feature J - N — ‘H ]

* You Only LLook Once (YOLO)

* Object detection network




Detonation Wave Tracking through Object Detection

Alternative Image Analysis — Galloping Waves
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Wave Separation via Spine Fit Differences

— W1-W2 Wave Spacing | |
— W2-W3 Wave Spacing
W1-W3 Wave Spacing
3 wave spacing N
— ——--2 wave spacing
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—T N /N
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NOx Emission (ppm) — NETL RDE on H2-Air ¥E ENERGY

NOx Emissions (ppm) — Corrected to 15% O2 LABORATORY
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NETL Water-Cooled, High Pressure RDE
Choked vs Unchoked Exit Nozzle
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Turbine Integration — High efficiency Diffuser ¥E ENERGY

Guillermo Paniagua and James Braun (Purdue University) LABORATORY

b) RDC diffuser subsonic turbine with
modified endwall

At large amplitude efficiency is reduce

Minier=0.3

Liu et al., “Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with
optimized endwalls”, Intl J. of Mech Sci,V188 (2020), https://doi.org/10.1016/j.ijmecsci.2020.105918

Fuel/Air Combustion | -
75.4% from 90.7% Injection Annulus | | ns_trumente
— Guide Vane

Miier= 0.6

Centerbody Exhaust Diffuser

71.7% from 79.7%
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NETL Optical and Modular RDE (mRDE) ¥E ENERGY

Combustor-Plenum interactions and Combustion Stability LABORATORY

* Optical Access
* Air plenum, combustor and exhaust

e Thrust measurement with ducted exhaust

* Provides performance metric through Equivalent
Available Pressure (EAP)

* Working to develop performance metric for
turbomachinery

* Testing conditions
* Hydrogen-Air (sonic nozzle flow measurement)

* Short duration (~ 3 sec)
* m, = 0-0.61 kg/sec

* Full diagnostic compliment

* OH Chemi, TDLAS, high speed PLIF/PIV, P, T and
chemi 1onization (ion probe)

:: » U.S. DEPARTMENT OF
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DOE focus is on RDE-gas turbine integration
* Improved cycle efficiency, H,-Air combustion and potential for low NOx emissions.
* PGC is inherently unsteady, fuel-oxidizer mixing, turbine inlet Mach #, characterize cycle benefits, high heat flux

NETL-RIC RDE focus

* Impact of wave mode, reduce combustion losses associated with deflagration
* Maximize work availability at the turbine inlet

* Control NOx emissions

* Improve turbulent combustion models

NETL High-Pressure RDE focus

* Instrumented nozzle guide vane tests

NETL Optical RDE

* Influence of injector on combustion losses
* Performance characterization
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