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Depends on the Question of Interest….

How Do We Use LCA?

2

Plan for the Future and Look Ahead

Assess Emerging and Existing Technologies

Compare Technology and Scenario TradeoffsA|B

Establish National Baselines
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Overview

The NETL CO2U LCA Guidance Toolkit

3

NETL CO2U LCA GUIDANCE TOOLKIT V 2.0.0
• Supports funding recipients with 

their LCA requirements.

• Fosters better decision-making for 
the U.S. DOE Carbon Conversion 
Program by providing a consistent 
and transparent analysis and 
reporting structure.

• Provides LCA guidance, data, and 
tools to LCA practitioners in the 
area of CO2U.

• Contributes to the global discussion 
on CO2U LCA and LCA methods.

• Toolkit site: 
netl.doe.gov/LCA/CO2U
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• CO2 conversion.
• Use of captured CO2 from the air 

or point sources.

• Conversion of CO2 into economically 
valuable products.

• Wide array of possible products and 
applications.

• Catalytic conversion. 
• CO2 is transformed into fuels and chemicals.

• Ranges from simple to complex and 
from feedstock to finished product.

• e.g., syngas, ethylene.

LCA of CO2U Pathways
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Microwave (MW): 
• Two variations analyzed.

• Dry reforming of methane (DRM).

• Mixed reforming of methane (MRM).

• Quick response time.

• Rare materials not required for 
operation.

• Mild operating conditions. 

• i.e., low temperatures and pressures.

• Better energy performance. 

• i.e., high energy efficiency and 
power density.

Types

Catalytic Conversion

Other types:
• Thermochemical.

• Electrochemical.

• Photochemical.

• Microbial.
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• Inflow gas is heated in a 
high-temperature reactor 
until plasma is generated.
• Strontium-doped lanthanum 

cobaltite (LSC) catalyst.

• Chemical selectivity and 
microwave absorptivity.

• CO2 and CH4 inflow gas are 
reformed into syngas. 
• Syngas is a key chemical 

building block.

Microwave Plasma

Catalytic Conversion
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Preliminary LCA performed to understand:

• What are the life cycle environmental impacts associated with catalytic 

CO2 conversion to other compounds?

• How does the life cycle environmental impacts of products made via 

catalytic CO2 conversion compare to those made by more 

conventional means?

• Does catalytic CO2 conversion as a utilization pathway have the 

potential to contribute to significant CO2 reduction?
• What processes contribute the most to environmental impacts?

• How do we best remedy those hotspots?

• How does performance change based on the future grid mix?

Objectives



88

• MeOH is chosen as a key product.

• Value in direct use and/or conversion into other chemicals.

• Autothermal Reformer (ATR) MeOH is the conventional pathway for comparison.

• Total global annual production.

• MeOH: 98 million tons.2

• For all pathways.
• Products identical in output ratios and conditions.

• e.g., temperature, pressure.

• MW-DRM syngas needs to be supplemented by H2.

• Multiple production scales considered.

• Detailed contribution analysis.

• Consider system breakdown of energy and material feeds and emissions.

Background

2International Renewable Energy Agency (2021). 
Innovation Outlook : Renewable Methanol
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• No excess electricity generated for export to grid.

• Some internal heat recovery and use.

• 90% capture rate of CO2 and unreacted hydrocarbons from production.

• ATR uses residual CO2 in syngas to convert in MeOH synthesis.

• Emits a light gas mixture containing mostly N2 and some H2O.

• Utilized NETL hydrogen baseline results for steam methane reforming 
(SMR), ATR, and polymer electrolyte membrane (PEM).1,2

Technical Specifications

1INETL (2022). Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies
2NETL (2022). Life Cycle Greenhouse Gas Emissions and Water Consumption From Existing and Emerging Hydrogen Pathways
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• Main CO2 source is an SCPC plant.

• Electricity is a co-product.

• Natural dome and ammonia plants are also explored.

• Limited sensitivity and uncertainty ranges.

• Data from preliminary empirical experiments and TEA model.
• Material and energy needs.

• Production scaling effects.

• For MW-DRM, additional H2 is supplied from PEM electrolysis.
• Also, MW-MRM has an option of heating via an electric boiler.

LCA Assumptions

Background
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Cradle-to-gate
• Ends at production gate.

Functional units
• 1 kg of MeOH.

Scope and System Boundary

TEA model generates the 
system I/O

• NETL MW system 
empirical data.

• Reaction temperature.

• Energy efficiency. 

• Conversion efficiency.

• Gas flow rate.

• Gas compositions.
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Tools
• LCA.

• openLCA.

• Impact method – TRACI 2.1

• Uncertainty and sensitivity analysis.

• Based on TEA work using Aspen Model.

Data and Tools

Methods

Inventory
• Electricity.

• Use is tracked for each system 
component.

• 2020 U.S. average consumption mix. 

• 2020 marginal capacity grid mix.

• 100% wind. 

• Natural gas.

• Used as both feedstock and 
thermal energy source.

• 2018 U.S. average consumption mix.

• CO2 source.

• Water.
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Scenario
Electricity 

(kWh)
Natural Gas (kg)

CO2 

Feedstock 

(kg)

O2 

Feedstock 

(kg)

Water 

(kg)

per kg of product feedstock combusted

MW assisted MeOH

DRM 6.23 0.012 - 0.032 - 0.046

MRM 3.93 0.020 1.23E-3 0.015 - 0.017

MRM-electrified 4.17 0.019 - 0.015 - 0.017

ATR methanol 0.23 0.57 - - 0.67 0.54

Supporting 

Processes

SMR H2 0.63 3.54 0.22 - - 16.4

PEM H2 55 - - - - 8.94

Inventory

Methods

*Based on NETL LCA and TEA data



1414

Conventional
• Besides main operations, 

significant global warming 
potential (GWP) share is 
upstream natural gas.

• ATR MeOH: ~28%.

Microwave
• Significant GWP share is 

MW reactor and auxiliary loads.

• MW DRM: 33%, 56%.

• MW MRM: 22 – 29% each.

Contribution Analysis

Results
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Results

• MW has greater resource 
requirement.

• Electricity.
• MRM: +180 to 290%

• DRM: +1700%

• MW-DRM has significant GWP 
decrease with cleaner grid mix.

• 100% wind.

• Marginal grid mix.
• NG: 51%

• Solar: 21%

• Wind: 27%
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Results

• MW has greater resource 
requirement.

• Electricity.
• MRM: +180 to 290%

• DRM: +1700%

• MW-DRM has significant GWP 
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• 100% wind.
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• NG: 51%
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Relative change in impacts

• Energy basis rather than 
mass basis.

Energy density

• MeOH: 23 MJ/kg.

Results
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Discussion and Future Work

• MW-DRM is still at early TRL (3–4)
• Energy demands are 100 –1000 times greater at commercial scale.

• Absence of energy-conserving effects is typical of industrial systems.

• Literature sources did not focus on environmental performance.
• Technical improvements are mainly in energy and conversion efficiency.

• One source studied nitric acid as the target product.

• Inclusion of more pathways and construction stages for comparison.
• Conventional: coal-to-methanol, coke-to-methanol.

• Novel: thermochemical, electrochemical, photochemical, microbial.
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Conclusions and Future Work

• Converting captured CO2 into value-added products such as methanol is 
a growing field of interest.

• Can help accelerate the widespread deployment of carbon capture systems.

• More economically attractive than just saline aquifer CO2 storage.

• Potential GWP advantage of MW-DRM and MW-MRM in MeOH products.

• Conventional systems w/o CCS and MW systems with 100% renewable electricity. 

• Improvements need to focus on the energy and resource efficiency of the MW 
reactor.
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Disclaimer

This project was funded by the United States Department of Energy, National Energy 
Technology Laboratory, in part, through a site support contract. Neither the United States 
Government nor any agency thereof, nor any of their employees, nor the support 
contractor, nor any of their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United States Government or any 
agency thereof.
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Questions?
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Back-up Slides
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Cradle-to-Grave Environmental Footprint of Energy Systems

Energy Life Cycle Analysis (LCA)

Extraction Processing Transport Conversion Delivery Use End of Life

LCA is a technique that helps people make better decisions
to improve and protect the environment by accounting for the 

potential impacts from raw material acquisition through 
production, use, end-of-life treatment, recycling, and final 

disposal (i.e., cradle-to-grave).

What is Life Cycle Assessment/Analysis (LCA)?
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NETL CO2U Guidance Key Points

Comparative LCA
Goal is to compare the CO2U system to 
the long-run marginal competitor in the 
market (comparison system).

Multiproduct functional unit with 
system expansion

Improve comparability and results 
interpretation.

Default scenarios for CO2 sources
Coal-fired power generation: flue gas, 
captured CO2 greenfield, and retrofit.

Guidance for comparison processes 
and system

Data quality and representativeness: 
Expectations based on TRL.

Three modeling options
1. openLCA with provided data.

2. Excel-based documentation sheet.

3. Other commercial LCA modeling 
software.

Interpretation requirements
Specific data/figures to provide 
consistency to study comparisons.
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Contribution Analysis

Results and Discussion

ATR SMR MW

Methanol Hydrogen Methanol Hydrogen

Natural Gas Production to 

Transmission
35% 38% 9% 5%

Combustion of Natural Gas 5%

SCPC electricity and CO2 36% 38% 12% 6%

CO2 Storage Operations 2%

Electricity

ASU 8%

Product Compression 5% 5% 12% 5%

Auxiliary 1% 4% 0.4% 8%

CCS 0.3% <0.1%

MW Reactor 27% 31%

MDEA <0.1%

WGS <0.1%
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