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DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof."

Attribution

KeyLogic Systems, Inc’s contributions to this work were funded by the National Energy Technology Laboratory under the
Mission Execution and Strategic Analysis contract (DE-FE0025912) for support services.
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e Introduction
e Data Science and LCA

 Power Sector Case Studies
e Natural Gas Liquids Unloading
e U.S. Hydropower
e U.S. Coal and Natural Gas Fleet

 Conclusions
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Introduction

Applied Data Science

« Applied Data Science

e Multidisciplinary field for
knowledge generation and
synthesis of structured and
unstructured data

e Complimentary to LCA
e Data-Driven Approach
e Large-Scale Datasets
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Programming
Data Structures
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Statistical Regression
Machine Learning

Domain Knowledge
First Principles

Data Visualization
Data Interoperability




Natural Gas Liquids Unloading

Introduction

* Research Objectives

e Develop a probabilistic ‘bottom-up’
framework to quantify methane
emissions from natural gas liquids
unloading

 Utilize engineering design equations
and first principles to characterize
methane emissions from liquids
unloading activities and account for
component-level and regional variability

'Schlumberger, Plunger Lift. Oilfield Review 2016, The Defining Series
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Engineering Design Equations

e Multivariable Equations
e Venting Frequency
e Casing/Tube Diameter
o Well Depth
e Shutin Pressure
e Standard Flow Rate
* Venting Duration

e Non-Plunger Systems

e Equation W-8 from 40 CFR
98 Subpart W

e Plunger Systems

e Equation W-9 from 40 CFR
98 Subpart W
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Probability Distributions and Monte-Carlo Simulation

* Develop Probability Distributions
for Key Parameters
» Several Heuristics
* Goodness of Fit Criteria

* Precedence in the literature
 Distribution is physically relevant

e Monte Carlo Simulation

e Randomly sample from probability
distributions (10,000 trials)

Probability Density Function

(%104

Values

Venting Frequency
(vents/well-yr)

Simulated Liquids Unloading Venting Frequency
(vents/well-year), Automatic Plunger-Lift
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Throughput Normalized Methane Emissions (TNME) LABORATORY
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100.0%

 Methane emissions from the San
Juan basin exhibit a heavy-tail
distribution

e Simulated emissions are highly skewed,
with a small portion of natural gas
activities responsible for a
disproportionately large fraction of total
emissions

e The high number of venting automatic
plunger-lift wells and the skewed
emissions distribution from automatic-
plunger systems drives the heavy tail "
distribution
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* Primary Research Objectives

e Evaluate the environmental impacts
from U.S. hydropower in 2016, with
specific focus on GHG emissions and
Water Footprint

 To the extent possible use publicly
available datasets and open-source
platforms

*Source: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation
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Statistical Regression

* Regression

 Training dataset via Scherer et al. 2016
» Dependent Variables. In(gCO, kWh), In(gCH, kWh)

» Predictors. In(ATE), In(Area), In(Age), ATE, Area, Age,
Tmax, Tmean, Tmin, Longitude, Latitude, NPP

e RFECV used for feature selection

» Feature ranking with recursive feature elimination
and cross-validated selection of the best number of
features, based on python’s scikit-learn machine
learning API

e LassoCV Regression

» Lasso linear model with iterative fitting along a
regularization path, the best model is selected by
cross-validation
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e Climate Data
* NOAA Global Summary of the Month accessed via FTP

e Pan Evaporation, Tmax, Tmin, Station Lat/Long for
2016

e Evap: 200 Stations
e Tmax: 13,532 Stations
e Tmin: 12,923 Stations

* Inverse Distance Weighting

 Interpolate climate data to determine climatic
conditions at hydropower reservoirs
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 Allocation Schemes :
+ Primary Purpose Rank-Based AIIoFatlon
e Allocates environmental burdens to the primary purpose ji oAl mdtny
of the dam 2 i

 Rank-based

* Allocates environmental burdens based on the ranking
of the dam’s purposes/functions

e Equitably
* Allocates environmental burdens equitably across all of
the dam’s purposes/functions
e Economic Allocation

* Allocates environmental burdens based on the economic
value of hydropower relative to the dam’s other
purposes/functions

e Based on data reported by ORNL*, and contingent on
installed capacity and number of dam functions

Economic Allocation

W Hydropower Benefit
Bl Other Benefit(s)

Three Four Five

Figure 5 - Average percentage of power benefit per reserveir. Colummns depict the number of quantifiable
purposes, while rows represent a range of installed capacity.

*Source: The economic benefits of multipurpose reservoirs in the United States - federal hydropower fleet (2015)

S. DEPARTMENT OF

NERGY




U.S. Fleet Hydropower ¥E SR ey
Results and Discussion LABORATORY

. No Primary Primary . .
Allocation Schemes Allocation Purpose (F) Purpose (L) Equitable Rank (F) Rank (L) Economic
GWP (kg CO2e / MWh) 47.09 18.75 16.63 14.01 20.10 18.43 12.32
H20 (m3 H20 / MWh) 176.82 76.25 66.72 54.97 78.29 70.44 50.90
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* Allocation Schemes

* Significantimpact on the
environmental profile of
hydroelectricity

* Regional Variability

* Statewide differences in
hydroelectric power GWP and water
intensity




U.S. Fossil Power Fleet

Introduction

Thesis: Shifting operational modes of thermal power plants as
a response to external factors such as an increasing
penetration of variable and/or intermittent power generation
technologies may result in unintended and/or higher relative
emissions rates

Research Questions:

1. Have historically baseload assets changed their mode of
operations over the past decade?

2.  How do the emissions profiles of baseload assets change
across modes of operations?

3. Evaluate the time-evolution emissions intensity of the
fossil fleet

This work was made possible by funding provided by the
Electric Power Research Institute (EPRI)
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 Model Development
e Python

e Key Data Sources:

e EPA’s Continuous Emissions Monitoring System (CEMS)
e Hourly emissions data for CO,, SO,, and NOy
e Heat Input
* Gross Generation

e EIA 923 and EIA 860

* Net Generation
e Generator nameplate capacity
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Fossil Fleet, Emissions Rates

Time Series: Coal Fleet
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 Baseload Power

* In 2016, natural gas displaced coal as the primary source of ‘baseload’ net generation,
constituting 51% of cumulative fossil baseload net generation.

e Coal Fleet

e Significant operational changes between 2008 and 2016 has contributed to lower
coal fleet efficiency and higher CO, emissions rates. Dramatic reduction in SO, and
NO, emissions rates driven by the implementation of emissions control technologies
to comply with EPA regulations.

 Natural Gas Fleet

e Dramatic increase in fleet gross generation, installed capacity, and fleet efficiency,
resulting in lower CO, and SO, emissions rates over the 2008 to 2016 time period.
Significant reduction in NO, emissions rates driven by efficiency improvements and
implementation of emissions control technologies
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Conclusions

* Intersection of Data Science & LCA

 Several case studies in the Energy Sector
e Enhanced knowledge generation and synthesis of data
* Methods have cross-sector applicability

Provatekty Censty Fuschion
e
E £ E E £

 Value addition 1
o Statistical analysis |
* Visualization
e Data/Database management
* Reproducibility
e Open Source Platforms
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Timothy J. Skone, P.E.
Senior Environmental Engineer « Strategic Energy Analysis
(412) 386-4495 = timothy.skone@netl.doe.gov

Greg Cooney
Senior Engineer = KeyLogic
Gregory.Cooney@netl.doe.gov

James Littlefield
Principal Engineer = KeyLogic
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George G. Zaimes
Senior Engineer = KeyLogic
George.Zaimes@netl.doe.gov

E @NETL_News
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