Economic Input-Output Life Cycle Assessment for Power Plant Construction

June 25-29, 2017

Derrick R. Carlson

Joe Marriott

H. Scott Matthews

Timothy J. Skone

Energy Life Cycle Analysis

Cradle-to-grave environmental footprint of energy systems

Extraction
Processing
Transport
Conversion
Delivery
Use
Use
Use
Use

Develop and utilize the LCA framework and methods to support the evaluation of sustainable energy systems both in and outside of the Department of Energy

Timothy J. Skone, P.E. Senior Environmental Engineer (412) 386-4495 timothy.skone@netl.doe.gov

A world-class research and analysis team that integrates results which inform and recommend sustainable energy strategy and technology development

Tim Skone – 18 years Federal Team Lead **BS** Chemical Engineering Joe Marriott - 12 years Contractor Team Lead PhD Environmental Eng. & Public Policy James Littlefield - 16 years Natural gas, system & process design **BS** Chemical Engineering **Chung Shih** – 12 years GIS, Subsurface, Software Dev. PhD Advanced Infrastructure Systems Matt Jamieson – 8 years Power systems, CO₂-EOR BS Mechanical Engineering Michele Mutchek – 5 years Loan program office, CO₂ Utilization MS Civil/Env/Sust Engr | BS Env Sciences Michelle Krynock – 2 years Natural gas, fuel cells, coal BS Civil/Env Engr & Public Policy **Derrick Carlson** – 7 years I/O LCA, Efficiency, CO₂ capture PhD/MS Civ/Env Engr | B.S. Chemistry Dan Augustine - 1 year Natural aas, visual analytics BS Energy Engineering Ambica Pegallapati – 5 years Biofuels, bioreactors, wastewater PhD Environmental Engineering Grea Zaimes – 4 years Energy analysis; transportation fuels PhD Civ/Env Eng; B.S. Physics

NATIONAL

TECHNOLOGY

ENERGY

Recent and Ongoing LCA Studies

Identifying/Quantifying Environmental Tradeoffs Inherent in GHG **Reduction Strategies for Coal-Fired Power**

Ongoing Work

- Establishing an Electricity Baseline for the U.S.
- Full environmental inventory for the Petroleum Baseline
- Creating a 2016 baseline for natural gas produced in the U.S.
- Creating a regionalized 2017 baseline for coal produced in the U.S.
- Using field EOR data to inform LCA results
- Collaboration with ONE Future for natural gas characterization
- Options for energy in the North Slope of Alaska
- Updated advanced power plant design LCAs

Collaborators

AN POSTAGAMENT

- LCA at NETL
 - Largely process based, over 450 unit processes
 - www.netl.doe.gov/lca
- Power plant construction modeling has been incomplete
 - Small impacts relative to operation
 - "In case of insufficient input data or data gaps for a unit process, materials and processes can be omitted, if the process contributes with less than 1% of mass or renewable or non-renewable primary energy of the total, and all excluded materials and processes do not exceed 5% of total energy use and mass." – EeBGuide Project
- Can we improve?

Reference: DOE/NETL-2015/1723 "Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3"

Current UP for Fossil Fuel Power Construction

.]	NETL Life Cycle Inventory Data - Detailed Spreadsheet Documentation Data Module Summary					
Process Name:	NGCC Power Plant, Construction]				
Reference Flow:	1 pcs.	of	NGCC Power Plant (NETL baseline) DQI 2,2,4,0,2	(see DQI sheet for explanation)		
Brief Description:	ief Description: Material input for the construction of the NETL baseline NGCC plant with our VCCS					
			SECTION I: META DATA			
		_				
Geographical Coverage:	US		Goal and Scope:			
Region			Reference Flow: 1pcs. of NGCC Power Plant (NETL baseline)			
Year Data Best Represents:	2000					
Process Type:	Manufacturing Process (MP)		This unit process provides a summary of relevant input and output flows associated with the construction of a natural gas combined			
Process Scope:	Gate-to-Gate Process (GG)		cycle (NGCC) power plant. This process can be used for scenarios with and without carbon capture and sequestration (CCS). Key			
Allocation Applied:	No	inputs include concrete, steel, steel pipe, stainless steel, aluminum, and cast iron. The key output is a piece of an NGCC power plant.				
Completeness:	Individual Relevant Flows Captured					

Note: All inputs and outputs are normalized per the reference flow (e.g., per piece of construction)

	77		S	ECTION II:	PARAMETER	S	
Parameter Name	Formula	Value I	needed to support adjustable Min. Value Max. Value	<i>parameters</i> , . Unit	Beferences	kions based upon adjustable parameters. Comments	
CCS		1				[binary] If CO2 in flue gas is routed to CO2 recovery, value = 1. If CO2 in flue gas is	
Net_MW_noCCS		555.080		MW	1	[MWh] Net Power Output for NGCC without CCS operation	flow Name
Net_MW_CCS		473.570		MW	1	[MWh] Net Power Output for NGCC with CCS operation	
Net_MW	IF(CCS=1;Net_MW_CCS;Net_MW_noCCS)	473.5700		MW		[MWh] Net Power Output for NGCC operation with or without CCS, depending on	Concrete, ready mix, H-5-U [Valuable substances]
NGCC_Conc_CCS		71456.31		kg/MW	1,2,4,5,6,7	[kg/MW] Average/estimated concrete material needs for an NGCC plant with CC	
NGCC_Conc_noCCS		70245.68		kg/MW	1,2,4,5,6	[kg/MW] Average/estimated concrete material needs for an NGCC plant without	l Steel cold rolled 1 St 1 Metals 1
NGCC_Conc_Ref	IF(CCS=1;NGCC_Conc_CCS;NGCC_Conc_noCCS)	71456.3146		kg/MW		[kg/MW] Average/estimated concrete material needs for an NGCC plant with or w	
NGCC_Steel_CCS		33687		kg/MW	1,2,3,6,7	[kg/MW] Average/estimated steel material needs for an NGCC plant with CCS	l Steel pipe (Metals) III III III III III III III III III I
NGCC_SteeL_nCCS		33434		kg/MW	1,2,3,6	[kg/MW] Average/estimated steel material needs for an NGCC plant without CCS	
NGCC_Steel_Ref	IF(CCS=1;NGCC_Steel_CCS;NGCC_Steel_nCCS)	33686.7586		kg/MW		[kg/MW] Average/estimated steel material needs for an NGCC plant with or witho	Cast iron part [Metal parts]
NGCC_Pipe_Ref		8391		kg/MW	1,3	[kg/MW] Average/estimated steel pipe material needs for an NGCC plant	
NGCC_Iron_Ref		252.45		kg/MW	1,5,6	[kg/MW] Average/estimated iron material needs for an NGCC plant	Aluminum sheet [Metas]
NGCC_AL_Ref		217.00		kg/MW	1,2,6	[kg/MW] Average/estimated aluminum material needs for an NGCC plant	i narmian price (Fricko)
NGCC_SS_Ref		88.26		kg/MW	1,7	[kg/MW] Average/estimated stainless steel material needs for an NGCC plant with	l Staiplass staal (cold rollad) [Matals]
NGCC_Conc_Tot	NGCC_Conc_Ref"Net_MW	3.38E+07		kg		[kg] Amount of concrete required to construct a single NGCC power plant	Stan ness steer (oold rolled) [rietals]
NGCC_Steel_Tot	NGCC_SteeLRef Net_MW	1.60E+07		kg		[kg] Amount of steel required to construct a single NGCC power plant	
NGCC_Pipe_Tot	NGCC_Pipe_Ref`Net_MW	3.97E+66		kg		[kg] Amount of steel pipe required to construct a single NGCC power plant	
NGUU_Iron_Tot	NGCC_tron_Ref"Net_MW	1.20E+05		kg		[kg] Amount of iron required to construct a single NGCC power plant	Collect this antira row than insert new row?
NGCC_AL Tot		1.03E+05		kg		[[kg] Amount of aluminum required to construct a single NGCU power plant	selections endre fow, dier in settinew fow?
NGCC_SS_Tot	IF(UUS=1;NGUU_SS_ReriNet_MW;U)	4.18E+U4		kg		[kg] Amount of stainless steel required to construct a single NGUU power plant	
End of List	(select this entire row, then insert new row)						

	SECTION III: INPUT FLOWS										
			This section includes all input flows considered for this unit process								
Parameter	Flow Name	Value	Units	Parameter	Unit	Total	Units per RF	Tracked	Origin	References	Compensa
NGCC_Conc_Tot	Concrete, ready mix, R-5-0 [Valuable substances]	-	1 kg	3.38E+07	kg	3.38E+07	kg	X	Literature	1,2,4,5,6,7	[Technosphere] Amount of concrete required to construct a single NGCC power plant
NGCC_Steel_Tot	Steel cold rolled (St) [Metals]	-	1 kg	1.60E+07	kg	1.60E+07	kg	X	Literature	1,2,3,6,7	[Technosphere] Amount of steel required to construct a single NGCC power plant
NGCC_Pipe_Tot	Steel pipe [Metals]	-	l kg	3.97E+06	kg	3.97E+06	kg	X	Literature	1,0	[Technosphere] Amount of steel pipe required to construct a single NGCC power plant
NGCC_Iron_Tot	Cast iron part [Metal parts]	-	l kg	1.20E+05	kg	1.20E+05	kg	н	Literature	1,5,6	[Technosphere] Amount of cast iron required to construct a single NGCC power plant
NGCC_AL_Tot	Aluminum sheet [Metas]	-	l kg	1.03E+05	kg	1.03E+05	l.	×	Literature	1,2,6	[Technosphere] Amount of aluminum required to construct a single NGCC power plant
NGCC_SS_Tot	Stainless steel (cold rolled) [Metals]	-	1 kg	4.18E+04	kg	4.18E+04	kg	×	Literature	1,7	[Technosphere] Amount of stainless steel required to construct a single NGCC power
End of List	<select entire="" insert="" new="" row="" row,="" then="" this=""></select>	Factor				Amount			<select from<="" td=""><td>n list></td><td></td></select>	n list>	

Flows Aggregated in Data Set:

Process

Energy Use

Energy P&D Material P&D

NATIONAL

Moving Beyond Raw Material Inputs

Engineering, Architectural, Chemical, Construction, Design, Government, etc.

Power Plant Construction

Raw Materials (current modeling)

- Steel
- Aluminum
- Concrete
- Iron

- Additional Components (proposed additions)
- Manufacturing
- Construction
- Services

- NETL baseline reports for coal and gas plants
- CMU Green Design Institute's EIO-LCA

ΑΤΙΟΝΑΙ

HNOLOGY

- Detailed Cost Engineering Data
 - Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3 (NETL)
- Map to NAICS (EIO sectors)
- Input to EIO-LCA model Carnegie Mellon University Green Design Institute – 2002 Producer model

If you are using this output as part of a project or paper, please cite appropriate

Carnegie Mellon University Green Design Institute. (2017) Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428 sectors) Producer model [Internet], Available from: http://www.elolca.net/> [Accessed 26 Apr; 2017] © Green Design Institute, Carnegie Mellon University, 201

Plant Cost Details (Supercritical PC e.g.)

Item No.	Description	EIO-LCA Sector
	HRSG, Ducting, & Stacks	
7.3	Ductwork	Air purification and ventilation equipment manufacturing
7.4	Stack	Air purification and ventilation equipment manufacturing
7.9	HRSG, Duct & Stack Foundations	Ready-mix concrete manufacturing
	Steam Turbine Generator	
8.1	Steam TG & Accessories	Turbine and turbine generator set units manufacturing
8.2	Turbine Plant Auxiliaries	Turbine and Turbine generator set units manufacturing
8.3	Condenser & Auxiliaries	Turbine and Turbine generator set units manufacturing
8.4	Steam Piping	Iron, steel pipe and tube manufacturing from purchased steel
8.9	TG Foundations	Ready-mix concrete manufacturing

- Map each line of the cost tables to EIO-LCA (NAICS) sectors
 - Quick, reliable, & easy way to model small components (vs. full UP)
 - Full UPs are not warranted given size of construction impacts
 - Offers much more detail than raw material UPs

Expansion of Impact Categories (EIO-LCA)

Economic Activity (\$ millions)	Conventional Air Pollutants (metric tons)	Greenhouse Gasses (t CO2e)	Energy (TJ)	Toxic Releases (kg)*	Transportation (ton-km)	TRACI LCIA	Others
Total Economic Activity	со	Total	Total Energy	Fugitive	Air	Glob Warm CO ₂ e	HazWaste Gen
Total Value Added	NH ₃	CO ₂ Fossil	Coal	Stack	Oil Pipe	Acidif Air SO ₂ e	Water Withdrawls
Employee Comp VA	NOx	CO ₂ Process	Natural Gas	Total Air	Gas Pipe	HH Crit Air PM10e	Land Use
Net Tax VA	PM10	CH ₄	Petrol	Surface Water	Rail	Eutro Air Ne	
Profits VA	PM2.5	N ₂ O	Bio/Waste	Underground Water	Truck	Etro Water Ne	
Direct Economic	SO ₂	HFC/PFCs	NonFossElec	Land	Water	OzoneDep CFC-11e	
Direct Economic (%)	voc			Offsite	Intl Air	Smog Air O ₃ e	
				POTW Metal	Intl Water	EcoTox 2,4D	
				POTW Nonmetal	Total	HH Cancer (benzene eq)	
						HH NonCancer (toluene eq)	

* The table above summarizes toxic emissions by sector by aggregating across all toxic substances regardless of impact. That is not a very good way of summarizing toxics.

Carnegie Mellon University Green Design Institute. (2017) <u>Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428 sectors) Producer</u> <u>model</u> [Internet], Available from: http://www.eiolca.net/> [Accessed 27 Apr, 2017]

Assumptions

Primarily for scaling up current UPs to total construction impact rather than per MWh

- 30 year lifetime for power plant
- 85% capacity factor
- 550 MWh NGCC plant
- 630 MWh SCPC plant
- 3% discount rate (to match the report year [2011 USD] and the EIO model year [2002 USD])
 - Consistent with national average Consumer Product Index
- Eng. H.O. and Fee is 10% of the bare erected cost modeled as the 'architectural and engineering services' sector
 - Architectural
 - landscape architectural
 - engineering, drafting
 - building inspection
 - geophysical surveying and mapping
 - surveying and mapping (except geophysical) services
 - testing laboratories
- Labor is modeled as other nonresidential construction

Results – Construction (SCPC)

UPs have mostly underestimated impacts

Selective Releases	UP kg per MWh	UP kg per Plant	EIO-LCA kg per Plant	Ratio EIO to UP
Ammonia	1.2 E-06	1.3 E04	3.5 E05	2.5
Barium	1.4E-08	1.7	11	6.6
Carbon dioxide	0.94	1.1E08	4.0E08	3.5
Carbon monoxide	0.01	1.1E08	2.6E08	2.3
NOx	1.0 E-05	1.2E03	1.8E04	14
Sulphur dioxide	0.0017	2.1E05	1.3E06	6.1
Organic emissions to air (group VOC)	0.0026	3.2E05	3.7E05	1.1
Methane	0.0025	3.1E05	1.6E06	5.4
Particles to air	0.001	1.3E05	5.7E05	4.3

Results – NGCC (Construction) UPs have mostly underestimated impacts

а	UP kg per MWh	UP kg per Plant	EIO-LCA kg per Plant	Ratio EIO to UP
Ammonia	5.84E-07	14,886	23,800	1.6
Barium	7.91E-09	1.1	1.1	1.0
Carbon dioxide	0.43	6.0E07	2.4E08	3.9
Carbon monoxide	0.0036	5.1E05	1.3E06	2.5
NOx	3.76E-06	530	8,722	16
Sulphur dioxide	0.00080	1.1E05	6.1E05	5.5
Organic emissions to air (group VOC)	0.0012	1.6E05	2.2E05	1.4
Methane	0.0011	1.5E05	1.2E06	7.8
Particles to air	0.00043	6.1E04	3.8E05	6.2

Does Construction Matter?

Old UP vs. New UP

NGCC 630 Construction Impacts / Total Impacts					
Output	% of Impacts (Old UP)	% of Impacts (EIO)			
Ammonia	0.4%	0.6%			
Carbon Dioxide	0.1%	0.5%			
NOx	0.9%	15%			

SCPC 550MW Construction Impacts/Operation Impacts					
Output	% of Impacts (Old UP)	% of Impacts (EIO)			
Ammonia	4.8%	12%			
Carbon Dioxide	0.1%	0.4%			
NOx	0.2%	3.0%			
Particulate Matter	2.1%	9.1%			

Fossil Scenarios with CCS?

SCPC Plant with CCS

- CCS represents a 40% increase in cost over a power plant without CCS
 - Some uncertainty with the exact numbers as these data are proprietary
 - The 40% adder to construction impacts is a good starting point

SCPC 550MW Construction Impacts/Operation Impacts					
Output	Percentage of Operation Lifetime Impacts				
Ammonia	6%				
Carbon Dioxide	5%				
NOx	4%				
Particulate Matter	7%				

 Construction is approximately 5% of operational lifetime CO₂ emissions

GHGs Scale with Construction Costs

- EIO-LCA offers an easy and reliable method to estimate construction emissions for power plants and expand inventory.
- Construction, design, processing, and other services are important to the construction impacts (3x -4x increase in CO₂ emissions).
 - Other impacts vary, but ignoring construction or modeling as raw material inputs misses the mark.
- While construction represents <1% of many impacts for the life cycle of a fossil power plant, this is unlikely to be true with the adoption of CCS and renewables.
 - For SCPC w/ CCS construction emissions are ~5% of the operational CO_2 emissions.

- Is this scalable beyond coal and natural gas?
 - Nuclear, Hydro
 - Wind, Solar
- Decommissioning
 - Data sources
 - Recycling of materials
- Update to USEEIO
 - Yang, Y., Ingwersen, W. W., Hawkins, T. R., Srocka, M., & Meyer, D. E. (2017). USEEIO: A new and transparent United States environmentally-extended inputoutput model. Journal of Cleaner Production, 158, 308-318.

18

Contact Information

Timothy J. Skone, P.E. Senior Environmental Engineer • Strategic Energy Analysis (412) 386-4495 • timothy.skone@netl.doe.gov

Joe Marriott Principal Engineer • KeyLogic joseph.marriott@netl.doe.gov

Derrick Carlson Senior Engineer • KeyLogic derrick.carlson@netl.doe.gov

H. Scott Matthews Professor, Carnegie Mellon University Civil & Environmental Engineering Engineering and Public Policy hsm@cmu.edu

LCA@netl.doe.gov

Preliminary Results – NGCC w/CCS

UPs have mostly underestimated impacts – note that these impacts are uncertain

