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CPG/Versa Power Systems (VPS)

Phase 1  
– CPG & VPS teaming for 2006 Phase 1 completion
– VPS 3-1 System-based prototype evolves towards mobile 

application requirements
– CPG develops and delivers new air flow and power 

conditioning sub-systems
Phase 2
– CPG/VPS develop new system tailored to RV requirements 
– VPS:  stack, manifolds, hot section components
– CPG:  system engineering; fuel processing; BOP and Power 

conditioning; packaging and market channel
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Cummins Power Generation
Versa Power Systems Teaming

Reformer development
Electronic controls
Power electronics 
Fuel systems
Air handling systems
Noise and vibration
Power system integration
Manufacturing
Marketing, sales, distribution

High performance planar cell 
& metallic interconnect 
technology
Planar SOFC stacks
High temperature thermal 
integration
Experienced SOFC system 
integrators
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Versa Power Systems

Focused on SOFC commercialization
Demonstrated cost-effective SOFC ceramic cell 
manufacturing technology
Highly competitive state-of-the-art SOFC stack 
technology 
Multiple generations of complete integrated system 
experience
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VPS SOFC 
Development Status

25040Stack Cell3

1,400950Stack Cell500
System

System

26,0008,800Stack Cell3,400

System Demonstrated
Test Duration

(hrs.)

Demonstrated
Deep Thermal
Cycles (TCs)

Demonstrated
Power Density

(mW/cm2)



10

Approach to 
Commercialization

Develop stack technology 
– Performance ($/kW)
– Sulfur tolerance
– Degradation
– Redox tolerance

Address system challenges to commercialization in 
mobile markets
– Reformer operation on ULSD
– Start-up and shut-down transient conditions
– Shock and vibration tolerance (robustness)
– Compact system integration (packaging)

Demonstrate capability to incorporate technology in 
context of product development program
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Phase 1 Prototype
– Evolved from Versa Power Systems 3-1 system
– Natural gas fueled, steam reformed
– Reduced Direct Internal Reforming (DIR)
– Internal stack clamping design
– Cost reduced air supply
– Simplified DC output (boost)
Phase 2 Prototype
– ULSD fueled
– Start-up and shut-down w/o supplementary gases
– Sulfur and redox tolerance
– Packaging and system integration
– Shock and vibration tolerance (robustness)

Approach to Development
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Plans Balance of Phase 1

CPG/VP Phase 1 Proto Development and Testing
– System Pre-test at VPS completed 09/05/2006
– Phase 1 Performance Test at CPG
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Phase 2 Plan Overview
CPG/VP Phase 2  Development and Testing
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Phase 1 Evolution
Reduced Direct Internal 
Reforming (DIR)

Low levels of DIR provide flexibility to operate with a 
wide variety of fuels, reforming technologies and 
operating conditions

Reduced DIR shifts stack heat rejection to other 
cooling means

VPS integrating low DIR capability into the latest 
stack technology
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Phase 1 Evolution 
Reduced Direct Internal 
Reforming (DIR)

Stack testing with no methane slip is the new 
baseline for stack testing in test stands

Stack design modified to reduce thermal gradients 
in VPS’ baseline platform for operation with low DIR 
reformate

System reformer modifications completed to 
increase natural gas conversion to H2 and CO
– Increased heat transfer in the afterburner / reformer design
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Phase 1 Evolution
Internal Stack Compression

Internal compression replaces cold 
external system components with 
integrated in-stack clamping (hot)
Internal compression  
– Reduces system volume and weight
– Reduces system part count and complexity
– Is more suited to mobile applications with 

shock and vibration environment
Internal compression utilizes differing 
thermal expansions between the stack 
and compression member design

Early generation 
internal compression in 

VPS stacks

Frame mounted 
external compression 
system
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Phase 1 Evolution
Internal Compression

Internal compression materials selected and parts 
fabricated and implemented in test stacks at 6 cell 
and 28-cell level
Thermal cycle testing of external and internal 
compression 6-cell stacks found no distinguishable 
performance difference
Phase 1 SECA test will run with external clamping, 
system will be converted to internal clamping post-
test



18

Phase 1 Evolution
Internal Compression

Test Results (121 cm2 active area):

6-cell  GT055296-0020 (PCI2) TC Comparison
March 20-April 10, 2006,  Stand 20, 725degC furnace temp
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Initial Phase 1 System Testing: 
Stack Current & Voltage vs. Time
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Initial Phase 1 System Testing: 
Peak Power
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Phase 2 Preparation
ULSD  - Fuel for Mobile SOFC 
Commercialization

CPG’s SECA work to date based on LPG and 
Natural Gas

Market studies strongly indicate ULSD (< 15 
ppmw sulfur) is critical to successful 
commercialization of CPG Target Markets

US EPA on Highway Emission requirements 
mandate transition to ULSD beginning in 2007 
(some regions have already begun transition).
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“Zero Net Water” for Mobile 
SOFC Commercialization

Water simplifies fuel reformation
– Source of additional hydrogen
– Reduces carbon formation

Higher S/C ratios mean water requirement can exceed the 
fuel requirement
Carrying significant amounts of water on mobile 
applications undesirable 
– Space
– Weight
– Availability 

Mobile system water requirement = Zero Net Water
Other factors favor desirability of waterless system
– Cost 
– Complexity 
– Storage requirements
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Diesel Reforming 
Technologies Compared
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Diesel Reforming Technology
Preliminary View for Mobile Products
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Evolution of SOFC Fuel System
Form Mobile Applications

ATR Stack
Reformate

AirAir

Fuel DC Power AC PowerPower
Conditioner

Exhaust
Water SECA Phase 2

ATR of ULSD using 
supplementary water
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CPOX Stack
Reformate

AirAir

Fuel DC Power AC PowerPower
Conditioner

Exhaust
Commercialization Objective

CPOX of ULSD using NO 
water

Evolution of SOFC Fuel System
Form Mobile Applications
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ATR Stack
Reformate

AirAir

Fuel DC Power AC Power

Water

Power
Conditioner

Exhaust

Water
Management

Air

Commercialization Fallback

ATR of ULSD using 
recovered water

Evolution of SOFC Fuel System
Form Mobile Applications
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Parallel Reformer 
Development Paths

Phase 1
Natural Gas SR

Phase 2
ATR Supplemental H2O

ATR Water Recovery Fallback Plan

Waterless CPOX
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2006 2007 2008

SECA Phase 1

SECA Phase 2

Primary Path to Commercialization

• ATR for SECA Phase 2
• CPOX Primary Path for commercialization
• ATR w/H2O Recovery Fallback
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Optimizing Air Supply 
System  Cost

Low Cost Air Supply Subsystem Design -- Primary Tasks
• Optimize flow levels and pressure losses
• Minimize the number of control elements/streams
• Avoid hot side valving
• Incorporate low cost (industrial / automotive) sensors and 

actuators
• Design with components derived from production supplier 

base and consumer product experience.
• Achieve costs consistent with high volume production 

components
• Develop robust control algorithms derived from system 

characterization
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Reduced cost air supply 

Butterfly Control Actuator Assembly 
with Integrated:
• Mass Flow Meter
• DC Servo Actuator
• Butterfly Valve Assembly
• Mechanical Linearization

Components Included in 
previous Prototype:
• Mass Flow Meters from 
Cummins 2007 B Series
• Stepper Motor Actuator
• Low Cost, ~40% Eff., 
Cathode Blower
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Air Supply

CPG Designed Field 
Replaceable Unit 
(FRU)
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Fuel Cell Power Electronics

Fuel

A
ir Onan Hybrid QD Electronics
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Phase 1 Fuel Cell Boost

Fuel Cell Boost
– Boosts and Regulates Fuel Cell Voltage

• Input Voltage Range 57-200Vdc

• 6kW output power.

• Output Voltage 200Vdc

– Current Limit Control for Stack Protection
• Limits Stack Current During Transients

– Soft-Start and Enable Feature

– Very Low Cost Design
• 6kW for <$200 Total manufacturing cost
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The Fuel Cell Boost
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The Fuel Cell Boost

Soft 
Start 
Relays

Inductor

Control
Board
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Fuel Cell Boost Efficiency vs Load

Fuel Cell Boost Efficiency
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Boost Heat Sink 
Modeling with Sauna

IGBT Temperatures with New Fan
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• Thermal Integration
• Compact
• Close Coupling

Phase 2 Packaging

Hot Zone/Stack
(650° C to 750°C)
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Packaging 

Target for Phase 2 system: 400-450 L
Replaces Diesel engine powered genset in hybrid system
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Common System Architecture

Fuel

A
ir Onan Hybrid QD Electronics

Genset
Control
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Dynamic Output for a 
Specific Input Condition

RV Daily Load Curve Generated by Monte Carlo Method
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Sample System Model Run

Load FC Power
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