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The Office of Program Performance & Benefits 
Analyses that guide and evaluate research, development and demonstration 

programs within NETL’s Strategic Center for Coal

R&D

Demonstration

Deployment/ 
Commercialization

Conduct engineering and economic analyses along the 
technology development pathway 

• Assess the potential environmental and economic   
performance of advanced technologies

• Conduct comparative analyses on the cost and 
performance of existing, competing and advanced coal-
based technologies

• Forecast economic and environmental benefits of 
advanced coal-based technologies
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Supercritical CO2
Cycles

• Introduction
• Fundamental thermodynamic analysis of SCO2 cycles
• Screening of coal-based heat sources
• Potential benefits for coal-based indirect SCO2 cycles
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• Potential higher efficiency relative to traditional fossil energy 
cycles 
– Use of recuperators reduces cycle heat rejection
– SCO2 has certain thermodynamic properties around the critical point 

that are beneficial (e.g. reduces recompression load)
• Indirect cycles can be integrated with various heat sources:

– Nuclear, solar, geothermal, fossil (optimize at different T)
• Reduced turbomachinery equipment sizes due to supercritical 

pressures may result in reduced capital costs
– Turbine at <  1/10 of a steam turbine (same P and T)

• Synergies with material programs for high temperature steam 
cycles

• SCO2 may enable higher peak temperatures since it is less
corrosive than steam 

Why SCO2 Cycles ?
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• Indirect:
– CO2 working fluid is used in a closed Brayton power 

cycles where heat input occurs using a heat 
exchanger or heat exchange surfaces

– Cycles usually operates above the CO2 critical point
– Any CO2 capture occurs outside of the indirect 

cycle
– Heat sources include fossil, nuclear, solar, and 

geothermal

• Direct:
– Recycling work fluid (primarily CO2) gains heat by 

an oxy-combustion process directly with the fuel
– Exhaust stream is sent to a turbine for power 

recovery
– Recuperators/heat integration are used to transfer 

heat to recycling fluid
– Requirement for removal of impurities/water from 

recycling fluid
– CO2 generated by combustion is removed for 

carbon capture at a high pressure as a slip stream 
from the recycling fluid

– Heat sources are fossil-based

SCO2 Cycles -- Indirect .vs. Direct
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FUNDAMENTAL THERMODYNAMIC 
ANALYSIS OF SCO2 POWER CYCLES
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• Focus on indirect SCO2 cycles
• Generic heat source with no associated temperature or 

temperature profile
• Parameters examined:

– Location on the T-P-V surface
– Configuration (recuperated, reheat, etc.)
– Turbine inlet temperature, pressure ratio
– Turbine exit pressure, recompression options (atm or above 

critical point)
– Compressor and turbine efficiency
– Heat exchanger designs/temperature approach
– Condenser cooling temperature
– Working fluid (Ar, N2, CO2)

• Cycle Simulations:
– ASPEN PLUS 

Basis for Thermodynamic Analysis
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Indirect Brayton Cycle
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2-Stage Recuperated

CO2 Pressure-Enthalpy Diagram
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Indirect Fired, Recuperated
Cycle Efficiency versus Pressure Ratio, η = 0.9, TIT = 1300 °F
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Indirect Fired, Recuperated
Heat Duties versus Pressure Ratio
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Thermodynamic Analysis for 
Closed, 2-Stage Recuperated

• Increasing the split fraction (SF),
- reduces Qc (heat rejected) 
- decreases  recuperator temp  

approach (dt)
• Improves cycle efficiency until

- impractical dt
• SF =0, cycle becomes 1 stage 

recuperated
• SF = ~ 0.37, ~optimized
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Indirect Fired, Closed, 2-Stage Recuperated
Impact of Turbine and Compressor Efficiency
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Indirect Fired, 2-Stage Recuperated
Impact of Turbine Inlet Temperature

0

10

20

30

40

50

60

70

200 600 1000 1400 1800 2200 2600

Ef
fic

ie
nc

y 
 (%

)

Turbine Inlet Temperature  (°F)

Rankine NETL

Rankine

sCO2 Sandia

sCO2

SC, USC, AUSC

subC
NETL

NETL



15

• Recuperation improves cycle efficiency of SCO2 cycles 
for low to moderate pressure ratios but results in large 
heat transfer requirements

• Cycle efficiency show a maximum efficiency at relatively 
low pressure ratios

• Optimizing split factor has a significant effect in 
improving cycle efficiency (recuperator effectiveness)

• Increasing Turbine inlet temperature improves Cycle 
Efficiency 

Indirect Fired, Recuperated
Summary of Results
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SCREENING OF FOSSIL-BASED HEAT 
SOURCES FOR INDIRECT SCO2 CYCLES
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Matching Heat Sources to Power Cycles
Minimizing Bottoming Cycles

• An objective with combined 
cycle power plants is to design 
the system to maximize the 
fraction of input heat going to 
the higher efficiency topping 
cycle such as a sCO2 Brayton
cycle

• The ultimate goal is to use all 
of the input heat in the topping 
cycle but this is often difficult 
without wasting lower level 
heat
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Matching Heat Sources to Power Cycles
T-Q Diagram for Conventional Coal-Based Systems 

and example indirect SCO2 cycle

Source: NETL

• sCO2 cycle requires a relatively 
constant temperature heat source 
for maximum plant efficiency.

• Conventional PC, CFB, and 
conventional oxy-combustion heat 
sources provide a heat source with 
a large slope of T versus Q.  Steam 
Rankine cycles have been tuned to 
maximize the use of this heat 
source temperature profile.

• Pairing theses heat sources and 
SCO2 power cycle does not meet 
the objective of minimizing the 
bottoming cycle.
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Matching Heat Sources and Power Cycles
T-Q Profiles of Modified Coal-Based Systems

• Adding enhanced 
preheat for combustion 
air or CO2 recycle 
enables conventional PC, 
CFB, and PFBC air and 
oxy heat sources to be 
tailored to match the T 
versus Q profile required 
for a sCO2 cycle.

• Modifications allow 
multiple coal-based 
systems (air, oxy, CFB, 
etc) to serve as a heat 
source for indirect SCO2
power cycles while 
meeting the objective of 
minimizing the 
bottoming cycle.
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POTENTIAL BENEFITS FOR COAL-
BASED INDIRECT SCO2 CYCLES
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• Applicable to multiple coal-based platforms (air and oxygen-fired, PC, CFB, PFBC)
– Coal combustor modifications (and associated costs) needed to match temperature-enthalpy 

profile of SCO2 cycles of interest
• Substantial efficiency improvements anticipated as shown in table below

– Varies based on temperature, specific cycle configuration and heat integration
• Significant cost uncertainties associated with SCO2 power island (eg. recuperators) and 

combustor modifications 
– Requires use of sensitivity analysis on cost of these sub-systems

• Result:  SCO2 cycles may provide 5-15% reduction in COE
– Compare to CCRP target of 20% (consistent with $40/tonne cost of CO2 capture)
– Gap to target met by advances such as 2nd Gen post-combustion capture, ASU, CO2

purification, etc.

Potential Benefits for Coal-Based 
Indirect SCO2 Cycles

Power Cycle 

Net Plant HHV Efficiency 
Improvement 

COE Change Attributable to 
Advanced Power Cycle

• in coal plants with 90% capture
• relative to SC steam cycle1 Low Cost3 High Cost3

AUSC Steam2 760°C (1400°F) +3.5%pts -7 to -8% +1 to -0%
SCO2 650°C (1200°F) +3 to 5%pts -6 to -11% +2 to -3%
SCO2 760°C (1400°F) +5 to 8%pts -10 to -16% -2 to -9%

1SC = Supercritical 3500 psig/1100°F/1100°F
2AUSC = Advanced ultrasupercritical 5000 psig/1400°F/1400°F consistent with program targets 
3“Low Cost” assumes combustor + power island costs same as SC steam case; 
“High Cost” assumes these sub-systems cost 40% more than for SC steam

No reduction
0 to 8%

> 8%
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• Minimal information available on SCO2 power island costs
– Turbomachinery expected to have lower costs due to lower pressure ratios and 

greater power density of SCO2 relative to steam cycles
– Configurations achieving high efficiency requires use of recuperators with large 

heat transfer areas; costs for recuperators are under investigation including 
identifying novel technologies

• eg. Microchannel heat exchangers that have 20-100 times greater compactness factor 
(heat transfer area to volume ratio) than conventional shell and tube exchangers 

– In general, achieving higher efficiencies requires additional cost (i.e. advanced 
materials, complex cycles with more equipment,  lower temperature approaches 
requiring larger heat exchangers, etc.)

• Modifications to base coal plant anticipated for most 
configurations which will likely increase cost of the                                                        
combustor and associated heat transfer piping

• Cost sensitivity approach for this analysis*:

Coal-Based Supercritical CO2 Cycles
Cost Uncertainties

Adv. System Cost (Power Island + Coal Combustor) 
Ref. System Cost (Power Island + Coal Combustor)

Low 100%

High 140%

*Assumes all cost changes in total plant cost come from power island and coal combustor cost, which represent 32 % of the total plant 
cost of the reference SC oxycombustion system
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Cost-Efficiency Trade-off for Adv. Power Cycles
Cost of Electricity
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• Indirect SCO2 power cycles have the potential for significant 
efficiency gains over conventional steam cycles; key 
parameters include:
– Configuration (recuperation, etc.)
– Temperature

• Indirect SCO2 power cycles are applicable to multiple coal-
based platforms, but require some modifications to match 
the temperature-enthalpy profile

• Costs associated with SCO2 cycles are uncertain and require 
further investigation

• Coal-based SCO2 cycles have the potential to provide a 5-
15% reduction in the COE
– Given costs between 0 and 40% greater than the conventional 

boiler/combustor and power island

Indirect SCO2 Power Cycle Analyses
Conclusions
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Back-Up
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Indirect Fired, 2-Stage Recuperated
Cycle Efficiency versus Cooler Bypass Split
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• Current Analyses 
– Fundamental, heat source-independent thermodynamic 

analyses (complete)
– Screening of fossil-based heat sources for indirect SCO2 cycles 

(preliminary results complete)
– Preliminary analysis on potential benefits of coal-based indirect 

SCO2 power cycles (complete)
– Full plant thermodynamic analysis of coal-based indirect SCO2

cycles (early stages)
– Review of third-party studies including validation and review of 

simulation models (ongoing)
• Future Analyses

– Cost analysis of fossil fuel-based SCO2 cycles
– Full plant thermodynamic analysis of direct SCO2 cycles

Scope of OPPB SCO2 Power Cycle Analyses
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Indirect Fired, Closed, 2-Stage Recuperated
Maximum Cycle Efficiency versus Pressure Ratio
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Matching Heat Sources and Power Cycles
T-Q Profiles of Modified Coal-Based Systems

Main Presentation

• Adding enhanced 
preheat for combustion 
air or CO2 recycle 
enables conventional PC, 
CFB, and PFBC air and 
oxy heat sources to be 
tailored to match the T 
versus Q profile required 
for a sCO2 cycle.

• Modifications allow 
multiple coal-based 
systems (air, oxy, CFB, 
etc) to serve as a heat 
source for indirect SCO2
power cycles while 
meeting the objective of 
minimizing the 
bottoming cycle.
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• Recuperation improves cycle efficiency of SCO2 cycles for low 
to moderate pressure ratios but results in large heat transfer 
requirements

• Cycle efficiencies show a maximum efficiency at relatively 
low pressure ratios

• Optimizing recuperator effectiveness has a significant effect 
in improving cycle efficiency

• Turbomachinery efficiency has a large impact on cycle 
efficiency
– Turbine efficiency has a significantly larger impact than 

compressor efficiency
• Cycle efficiency will vary with turbine exit temperature

– Optimum for example system with a TIT of 1300°F occurs at 
~1300 psia

• Cycle efficiency increases with turbine inlet temperature

Indirect Fired, Recuperated
Summary of Results
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Indirect Fired, 2-Stage Recuperated
Maximum Cycle Efficiency versus Turbine Exit Pressure
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Indirect Fired, 2-Stage Recuperated
Temp-Enthalpy diagram at PR = 1.74, Split = 0.00

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

Te
m

pe
ra

tu
re

  (
°F

)

Enthalpy Change  (MMBtu/hr)

Hot Side

Cold Side



33

Indirect Fired, 2-Stage Recuperated
Temp-Enthalpy diagram at PR = 1.74, Split = 0.37
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SCO2 Cycle Basis
Assumptions

Source: NETL

• Recompression SCO2 cycle
– Indirect
– 2-stage

• Preliminary cycle 
conditions:
– TIT  = 1300 °F
– ηturbine - isentropic = 0.927
– ηcompressor - isentropic = 0.85
– Pturbine-exit = 1150 psia
– Pturbine-inlet = 3000 psia
– Pressure Ratio  ~ 2.60  
– TC = 95 °F
– Tc = 1100 °F
– Td = 1300 °F

Preliminary cycle for discussion only – a more optimum cycle can be 
used to refine results

Heat 
Source

Q

TcTd

Source: NETL
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• Objective:  
– Evaluate impact of a hypothetical advanced power cycle integrated in 

a coal-fueled power plant

• Approach:
– Select reference plant
– Increase net plant efficiency with no corresponding change in cost for 

advanced components
• Hold net output constant and vary coal input
• Scale costs of reference plant to match new coal input 

– Include cost sensitivity to evaluate impact of cost of the advanced 
power cycle and coal combustor relative to reference plant combustor 
and power island

– Evaluate impact of efficiency and cost changes on:
• COE of coal plant with CCS
• Natural gas price where COE of Adv. NGCC with CCS is equal to that of 

the coal plant with advanced power cycle

Cost-Efficiency Trade-off for Adv. Power Cycles
Objective and Approach
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Cost-Efficiency Trade-off for Adv. Power Cycles
NG Price where COENGCC** = COE2nd Gen Coal with Adv. Cycle

Source: NETL

Reference:  
2nd Gen Oxy-
combustion
(advances in 

ASU, 
combustor, CO2

recycle, and 
CO2
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Combining SCO2 cycle with 
other advanced technologies 

improves market potential
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up in 2030*  

* AEO 2013 Reference case for plants with an economic life 2030-2060; dotted line represents U.S. average of $8.50/MMBtu; range of 
$7.90 - $9.65/MMBtu is for individual NEMS regions for the year 2030.   **No additional advances included for NGCC with CCS

2nd Gen 
SC Oxy PC
$8.4/MMBtu
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Cost-Efficiency Trade-off for Adv. Power Cycles
NG Price where COENGCC = COECoal with Adv. Cycle

Source: NETL

Reference:  
SOA SC Oxy-
combustion

CO2 Revenue 
varying from 
$0/tonne CO2
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Market potential highly 
sensitive to CO2 revenue 

due to greater CO2
production of coal plants 

compared to NGCC 
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Natural Gas Simple Cycle with SCO2
Bottoming Cycle (waste heat recovery)

Oxy-Fuel Pressurized Combustor with SCO2
Topping and Steam Bottoming Cycle

Oxy-Fuel PFBC with SCO2 Topping Cycle 
and Steam Bottoming Cycle

PC Boiler with SCO2 Power Cycle 
or solid waste incinerator

Example Applications – Indirect Cycles

Duct Burner

6
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Oxy-Fuel Direct Fired SCO2 Power Cycle 

• Commercial interest
– Net Power
– Aerojet Rocketdyne
– SwRI

• Benefits to CCS
• Technical issues
• Bottom line: TIT needs to 

exceed 2,075 F to surpass 
NGCC w/post CCS on an 
efficiency basis



42

• Pulverized coal boiler or waste incinerator
– EPRI report replaces AUSC steam cycle (5100 psi/1256 F/ 1292F) with SCO2 RCB cycle 

(3000 psi/1300 F / PR~3) yields 3.3 % pts. higher thermal cycle efficiency
– Coal-fired plant concept with SCO2 Brayton power cycle (4350psi/1150F)

• Net plant efficiency with 90% CO2 capture: 41%; without CO2 capture: 50%
• Levelized cost of electricity reduction: 15%

• Oxy fuel pressurized fluidized bed combustion (OPFBC)
– Aerojet Rocketdyne compares OPFBC with steam Rankine (TIT 1110 F) with SCO2 RCB 

(TIT 1300 F) yields 4.9 % pts. improvement
• Oxy-fuel boiler with SCO2 topping steam bottoming cycles

– Compact power unit (SCO2 RCB topping & steam bottoming)
– Production of clean power, water and CO2 for EOR 

• SCO2 bottoming cycle for waste heat recovery
– Applications: SGT, WHR, Shipboard, offshore
– High Power Density -> Low weight, small size

• Direct SCO2 power cycle
– CCS, water, EOR
– Potential for higher efficiency

SCO2 Power Cycle Overview
Potential Benefits for FE Applications
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