Back to Top
Skip to main content
NETL Logo

Available Technologies

Title Date Posted Patent Information Opportunity Sort ascending
Application of Oxide Dispersion Strengthening Coatings for Improved Transpiration Cooling USPN 9,579,722

Research is active on the development and incorporation of oxide dispersion strengthening (ODS) coatings for use in gas turbine component cooling applications. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Polymeric Sorbent for Use in CO2 Capture and Separation USPN 10,323,125

Research is active on the design, synthesis, and use of polymeric sorbents for gas separation applications. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Hydrophobic Carbon Capture Solvent USPN 10,589,228

Research is active on the design and synthesis of a new carbon dioxide (CO2) capture solvent based on PEG-Siloxane. Unlike conventional gas-removal solvents, the NETL’s new solvent technology is hydrophobic and has a low vapor pressure. A hydrophobic solvent with low vapor pressure is highly advantageous because it can reduce the cost and energy-consumption associated with CO2 capture by simplifying solvent regeneration and negating the need to remove water from fuel gas. For example, this solvent operates above room temperature and can be regenerated using low-grade and waste heat, whereas commercially available solvents operate below room temperature and can’t be regenerated using low-grade or waste heat This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

High-Temperature Sensors for Monitoring and Control of Solid Oxide Fuel Cells USPN 11,380,918

Research is active on the application of embedded optical fiber based sensors to an operational solid oxide fuel cell (SOFC) in conjunction with high-temperature stable distributed interrogation approaches to allow for local monitoring of the absolute value and spatial gradient of the chemical composition and temperature of an anode or cathode stream.

Embedded Gas and Temperature Sensors for Extreme Environments USPN 8,411,275; USPN 8,638,440; USPN 8,741,657; USPN 8,836,945; USPN 9,568,377; USPN 9,019,502; USPN 9,964,494

Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. A portfolio of patented technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities.

Efficient Process for Converting Methane to Syngas USPN 10,106,407

Research is active on a method to convert methane into synthesis gas using mixed metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas (NG), which is composed primarily of methane, is one of the most abundant, low-cost carbon-containing feedstocks available. The economically available route to produce valuable chemicals from methane is via synthesis gas followed by different chemical routes to manufacture the desired chemicals. In a large-scale industrial plant, the production of syngas accounts for a large part of the total costs. Therefore, it is important to develop more efficient and cost-effective methods for the conversion of methane to syngas.

Efficient Processes for the Conversion of Methane to Syngas USPN 11,059,721

Research is active on a method to convert methane into synthesis gas using a mixture of metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Metal-Loaded Basic Immobilized Amine Sorbents for the Removal of Metal Contaminants from Wastewater U.S. Patent Pending

NETL's basic immobilized amine sorbents (BIAS) have previously been shown effective at removing heavy metals and radioactive ions from aqueous sources. Chelating the amines with metals such as iron or copper significantly increases the heavy metal capture affinity of the sorbents, up to 50% over the non-metal chelated amines. In this invention, the metal-chelated polyamine is chemically tethered to a solid silica support (SiO2) via a crosslinker. The sorbents resist leaching by H2O in an aqueous stream containing heavy oxyanion-based (and other) metals and demonstrate stability over a pH range of 5 - 14. Cationic heavy metals are captured by the amine functional groups (-NH2, -NH, -N) from the polymeric network while oxyanionic metal species bind readily to the metal loaded sites. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Capture of contaminants from water flowing through sorbent.
Capture of contaminants from water flowing through sorbent.

Challenge

Heavy metals are common in industrial wastewater streams such as those associated with flue gas desulfurization (FGD), acid mine drainage, hydraulic fracturing, and nuclear fission. As heavy metals pose health and environmental hazards, there is a critical need to remediate them, i.e., safely and efficiently remove them from the aqueous sources. The US Resource Conservation and Recovery Act (RCRA) gave the US Environmental Protection Agency the authority to establish and enforce regulatory policies and toxicity limits arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), selenium (Se), and other metals. Many of these metals present a distinct challenge for capture because they are most commonly present in the polyatomic oxy-anion form. Sources for most of these contaminant metals result from the treatment of fossil fuel-derived, post-combustion flue gas with aqueous-based technologies. The well-known and widespread contamination of RCRA metals in drinking water and other terrestrial water sources either through natural processes or resulting from human activity, demands remediation.

Thin Ionic Liquid Film Deposition within Porous Substrates USPN 9,186,854

NETL researchers are currently developing ionic liquid technologies for application to carbon capture or other separation processes. Ionic liquids can function as a platform for an amazingly diverse set of applications, including batteries, processing of polymers and cellulose, waste water treatment, and gas separation. These technologies are available for licensing and/or collaborative research opportunities between interested parties and the U.S. Department of Energy’s National Energy Technology Laboratory.

Spheroid-Encapsulated Ionic Liquids for Gas Separation USPN 9,050,579

An innovative approach has been developed allowing the use of high viscosity for gas separations. The method involves the encapsulation of ionic liquids (ILs) into polymer spheroids, taking advantage of the gas-absorbing properties and cost-effectiveness of ILs, while circumventing known IL viscosity issues. Significantly, the process permits optimization or ‘tuning’ of the IL-containing spheroids for specific gas separation applications. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.