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1. INTRODUCTION 

Geologic storage (GS) of CO2 has been considered as a viable option to reduce CO2 emissions to 
the atmosphere. There are various concerns about potential risks associated with injecting large 
amounts of CO2 into the deep subsurface, including potential brine/CO2 leakage and induced 
seismicity. In order to achieve industrial-scale CO2 storage, it is important to develop a modeling 
framework for assessing such risks and selecting the sites with acceptably low risks.  

Since system-level modeling of GS risks requires evaluating the entire subsurface storage system 
(e.g., the target reservoir, the leakage pathways and the potential receptors such as shallow 
groundwater resources), the use of an integrated multi-scale physics-based model for the entire 
system would be too computationally demanding to conduct uncertainty quantification over a 
large range in a high-dimensional parameter space. The current option in the National Risk 
Assessment Partnership (NRAP) for system-level analysis is therefore to decouple reservoir, 
leakage, and shallow aquifer simulations. The reservoir-model component plays a key role in 
such a framework. The reservoir simulations provide various quantities for subsequent analyses; 
for example, such simulations predict the pressures and CO2 saturations necessary for computing 
the leakage risks.  

The challenge is that reservoir models often have a large computational mesh and need to solve 
for complex non-linear processes, such as thermodynamic and thermophysical behavior of H2O-
NaCl-CO2 mixtures and related phase transitions (Pruess, 2005). Modeling the pressure response 
to CO2 injection requires a large domain, since the pressure propagates much farther than the 
CO2 plume and is likely to propagate beyond the storage reservoir through the caprock and 
possibly into overlying formations (Zhou and Birkholzer, 2011). Running such reservoir models 
multiple times—which is necessary for probabilistic risk assessments—is computationally 
intensive, and in some cases could make such risk assessments impossible to conduct for 
exhaustive sets of all the parameters. 

Uncertainty quantification (UQ) study, including sensitivity analysis (SA) and uncertainty 
analysis (UA), is essential in risk assessments. In this context, SA is critical to select important 
parameters and/or to reduce the number of parameters to be perturbed. SAs can also serve as a 
basis for developing reduced-order models (Pau et al., 2012). Birkholzer et al. (2011) studied the 
sensitivity of brine pressurization using a basin-scale reservoir model, which identified important 
parameters for the regional pressure buildup and dependence of sensitivity on time and 
measurement locations. 

There are several sensitivity methods available: local sensitivity, Morris sensitivity, and Saltelli 
sensitivity (Sobol index) methods (Morris, 1991; Cacuci, 2003; Saltelli, 2008). The last two 
methods are called global sensitivity methods, which can provide more robust sensitivity 
measures with respect to the nonlinearity in system responses and interactions among 
parameters. The global methods, however, are based on sampling parameters. As a result, they 
could be computationally intensive. There is also an argument that local sensitivity analysis is 
sufficient, and that global sensitivity methods do not provide enough additional information to 
justify investing in large computational resources. This could also be because the use of SA is 
often limited to ranking the parameter importance without looking at various features such as 
nonlinearity and interactions. 
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This work presents a UQ study on reservoir processes during and after CO2 sequestration, using 
a high-resolution basin-scale reservoir model. There are three main focuses: (1) to show the 
feasibility of conducting local and global sensitivity analysis using a high-resolution basin-scale 
model, (2) to compare different sensitivity measures with respect to interpretation and 
computational requirements, and (3) to demonstrate the usefulness of SA beyond just ranking the 
parameter importance. 

The reservoir model is based on an earlier modeling study described in by Zhou and Birkholzer 
(2011), which was conducted for a hypothetical industrial-scale storage project in the Southern 
San Joaquin Basin in California. The geological structure and hydrogeological parameters of 
various subsurface layers were determined from field data originally assembled for a planned 
CO2 pilot project in the area. The massively parallel version of TOUGH2 was used to simulate 
CO2/brine migration and pressure buildup within the CO2 storage formation and 
overlying/underlying formations. The model provided a unique opportunity to investigate the 
impact of hydrogeological parameters and their uncertainty on various performance measures of 
the CO2 storage system in a realistic setting.  
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2. MODEL SET UP 

The reservoir-scale CO2 migration model was developed based on a geological study in the 
Southern San Joaquin Basin, California, using the geologic and hydrogeologic data obtained 
from many oil fields in that region (Birkholzer et al., 2011; Zhou et al., 2011; Zhou and 
Birkholzer, 2011). The domain shown includes twelve discontinuous or continuous (stacked) 
formations, extending 84 km in the eastern direction and 112 km in the northern direction. The 
domain also includes several faults, which are considered to be semi-impermeable sealing faults 
at large depth.  

The Vedder formation, considered as the a viable storage option in this region, is a large 
permeable sandstone formation that dips upward towards a shallow outcrop area located along 
the eastern model boundary, at an average slope of seven degrees. The overlying Temblor-
Freeman Shale (TF Shale) is a suitable caprock formation for stratigraphic containment of the 
injected supercritical CO2. Within the Vedder, one may distinguish six alternating sand/shale 
layers—Vedder Sand (V Sand) and Vedder Shale (V Shale)—based on the well logs. These 
internal facies are considered laterally continuous in this study. At the (assumed) injection site in 
the center of the domain, the Vedder formation is 400 m thick, and its top elevation is about 
2,750 m below ground surface. The caprock (TF Shale) is about 200 m thick. The areal extent of 
the Vedder formation is shown in green color in Figure 1(a). The formation pinches out to the far 
south, west, and north of the injection site, and, as mentioned above, reaches the surface along 
the eastern boundary.  

 

 

                      (a)                     (b) 

Figure 1: (a) Plan view of the Vedder formation and the faults (the major faults are shown in 
red.), and (b) Plan view of the numerical domain with mesh. The blue dot is the injection 
location, and the red dots (Point A and B) are used as points of interest in this study. 
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Figure 1(a) also shows the outline of several faults in the area. Fault zone properties are quite 
uncertain; however, there are qualitative observations that most fault zones should be less 
conductive than the adjacent sandstone formations (Birkholzer et al., 2011): (1) oil and gas 
trapping is observed under in situ effective stress conditions, (2) water-level observations in the 
Pond-Poso-Creek fault zone east of the hypothetical injection location suggest a partial 
groundwater barrier in shallow units, and (3) oil and gas fields are partially compartmentalized 
as evidenced by pumping tests. While acting as partial barriers, the fault offset is in all cases 
significantly smaller than the thickness of the Vedder formation; thus some lateral hydraulic 
connectivity across the faults is to be expected. For the purpose of this study, partial 
compartmentalization was assumed as a fault scenario such that the lateral fault permeability of 
major faults is reduced by a factor of 100 compared to the adjacent formation permeability. The 
model explicitly accounts for the three most prominent faults in the numerical grid (Figure 1b): 
the Greeley fault west of the injection location, as well as the Pond-Poso-Creek fault zone and 
the New Hope fault zone east of the injection location. Additional fault property scenarios were 
studied, but shall not be reported here. Note that in all scenarios, faults are assumed non-
conductive in shale formations; i.e., the potential for leakage of CO2 and/or brine through 
permeable faults is not a concern in this study. Also, the potential for fault reactivation is not 
addressed in this study. 

The massively parallel version of TOUGH2 (Zhang et al., 2008) was used with the ECO2N 
module to simulate injection and migration of supercritical CO2 in the brine system. The ECO2N 
module describes thermodynamics and thermophysical properties of H2O-NaCl-CO2 mixtures, 
including phase transitions and dissolutions (Pruess, 2005). The simulation time includes the 
injection period of 50 years with an injection rate of 5 Mt per year, and a post-injection period of 
150 years. In this study, a 3D mesh of 64,214 elements was generated for 16 hydrogeological 
layers, representing the 11 formations from the crystalline base rock to the top shallow aquifer. 
As mentioned before, the storage formation (the Vedder sandstone) was divided into three sand 
model layers and three alternating shale layers (V Sand and V Shale). This mesh was obtained by 
coarsening the high-resolution mesh used by Zhou et al. (2011) and Zhou and Birkholzer (2011); 
it was more refined both laterally and vertically than the coarse mesh used in Birkholzer et al. 
(2011). The mesh design was such that this study can accommodate a large number of 
simulations, while accurately accounting for the CO2 plume behavior in the storage formation. 
Figure 1b shows the plan view of the current numerical mesh. Significant mesh refinement can 
be seen in the center of the domain, where multi-phase processes and strong pressure buildup can 
be expected in response to CO2 injection. 

For discussion of sensitivity analysis, one needs to choose performance measures, which depends 
on the type of model application and the focus of a given study. These performance measures 
may be point-based, such as localized CO2 saturation and localized pressure, or they may be 
area-based, such as CO2 plume extent and spatial extent of pressure buildup above a given 
threshold (Nicot et al., 2008). In this study, three measures were chosen, two of which are point-
based: CO2 saturation at a point 1.8 km updip from the injection location (Point A in Figure 1b), 
and pressure buildup at the fault 7.3 km updip from the injection point (Point B in Figure 1b). 
The third measure is the extent of the overpressure zone, which is defined here as the area of 
pressure increase larger than 0.2 MPa at the reservoir-caprock interface. 

	



Modeling the Performance of Large-Scale CO2 Storage Systems: A Comparison of Different Sensitivity Analysis Methods 

5 

3. SENSITIVITY ANALYSIS METHODS AND IMPLEMENTATION 

This section introduces the three sensitivity methods. Although each method is documented in 
detail in Morris (1991) and Saltelli et al. (2008), they are briefly described here for completeness. 
A set of parameters are denoted by {xi| i=1,…,k} and a scalar output of a model by y, which is a 
function of {xi}; y = f({xi}), where k is the number of parameters. 

3.1 LOCAL SENSITIVITY METHOD 

The local sensitivity is defined as a partial derivative, i.e., the change of an output variable 
caused by a unit change in each parameter from the reference value. A numerical model can 
compute the derivative by changing each parameter by a small increment Δxi from the reference 
parameter values xi

* and computing the difference of the output. The scaled sensitivity is the 
derivative scaled by the standard deviation of parameters and measurement errors. The scaled, 
dimensionless sensitivity is defined as: 

 
Si

local   x

 y

y

xi xi*

  x

 y

f (x1*,.., xi *xi,..) f (x1*,.., xi*,..)

xi . (1) 

where x is the standard deviation of the parameter, and y is the standard deviation of the model 
output, reflecting its measurement error or acceptable mean residual in an inversion. 

3.2 MORRIS SENSITIVITY METHOD 

In the Morris one-at-a-time (OAT) method (Morris, 1991), the parameter range—normalized as a 
uniform distribution in [0, 1]—is partitioned into (p–1) equally-sized interval so that each 
parameter takes values from the set {0, 1/(p–1), 2/(p–1), …, 1}. From the reference point of each 
parameter randomly chosen from the set {0, 1/(p–1), 2/(p–1), …, 1– Δ}, the fixed increment Δ = 
p/{2(p–1)} is added to each parameter in a random order to compute an elementary effect (EE) 
of each parameter, which is the difference of output y caused by the change in the respective 
parameter. k+1 runs are necessary to complete one path, which is to change each parameter once 
from one set of reference values. By having multiple paths (i.e., multiple sets of reference 
parameter values and multiple, random orders of changing each parameter), there is an ensemble 
of EEs for each parameter. Three statistics can be computed: the mean of EE, variance of EEs, 
and the mean of absolute EEs (mean of |EE|). The mean EE can be regarded as a global 
sensitivity measure. The mean |EE| is used to identify non-influential factors. The variance of EE 
is used to compute the standard error of mean (SEM) for identifying nonlinear or interaction 
effects. 

3.3 SALTELLI SENSITIVITY METHOD 

While the local and Morris sensitivity methods are difference-based, the Saltelli method is 
variance-based. Saltelli et al. (2008) defined the sensitivity index by V[E[Y|Xi]]/V[Y] for 
parameter importance, where E[] and V[] represent mean and variance, respectively. This is 
the variance of conditional expectation of the system response when Parameter i is fixed, 
normalized by the total variance of system response. Conceptually, this measure quantifies the 
contribution of each parameter to the uncertainty or variability of the output. In addition, Saltelli 
et al. (2008) defined the total sensitivity index by V[E[Y|X-i]]/V[Y], where E[Y|X-i] represents the 
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mean of Y conditioned on all the parameters but Xi. The total sensitivity is used to identify 
unimportant parameters. These two indices can be computed using the Monte-Carlo integration 
described in Saltelli (2002, 2008).  

3.4 IMPLEMENTATION IN iTOUGH2 

The global sensitivity analysis module was implemented in iTOUGH2 (Finsterle, 2010). 
iTOUGH2 was coupled with TOUGH2-MP using the PEST protocol (Doughty, 2007; Finsterle 
and Zhang, 2011). Typically, the sensitivity analysis is done in serial by generating sets of 
parameters, running the simulations and analyzing the simulation results. This scheme is often 
problematic for large-scale simulations when there are numerical problems caused by a few set 
of parameters and the entire run is too expensive to repeat. To accommodate large-scale reservoir 
simulations, iTOUGH2 was modified so that it can decouple the scheme into three parts. 

Part 1: Pre-processing. In a pre-processing step, iTOUGH2 generates input parameters 
and writes input files from the parameter distributions, and saves them in directories.  

Part 2: Simulations. iTOUGH2 or a simple script initiates embarrassingly parallel runs of 
TOUGH2-MP.  

Part 3: Post-processing. In a post-processing step, iTOUGH2 reads the output files from 
each directory and analyzes them, for example, by calculating sensitivity coefficients, 
composite sensitivity measures, or elementary effects and their variances.  

Since all the related files are stored in each directory, when a few parameter sets cause numerical 
problems, it is possible to investigate the cause and fix each one of them without repeating the 
entire analysis. The post-processing procedure can later include the fixed results. 

This three-step approach also provides more flexibility; it is possible to re-analyze the output for 
different performance measures. The pre-processing part is data or physics driven such that once 
the data and model is established the parameter distributions and the input files can be fixed. The 
post-processing part is application driven so that many performance measures can be considered 
for different applications (e.g., leakage, induced seismicity). Since all the output files are kept, 
iTOUGH2 can analyze different measures without re-running the simulations, which are the 
most expensive part.  

  



Modeling the Performance of Large-Scale CO2 Storage Systems: A Comparison of Different Sensitivity Analysis Methods 

7 

4. PARAMETER DISTRIBUTION 

In this SA, five properties (permeability, porosity, pore compressibility, van Genuchten  and m) 
are varied of two geological layers of the storage formation (V Sand and V Shale) and the 
caprock (TF Shale), so that there is a total of 15 parameters. For the V Sand permeability and 
porosity, the depth-dependent parameter values and their uncertainty range were estimated using 
available datasets (Figure 2). For the rest of the parameters, the reference parameter values are 
shown in Table 1. The range of parameters in this study is one order of magnitude up and down 
in permeability, a factor of five up and down in pore compressibility, 30% up and down in 
porosity and van Genuchten m, and half an order of magnitude up and down in van Genuchten . 
For brevity, the hydrogeologic properties of all other model layers, which are kept constant in the 
SA, are not provided in this report (see Birkholzer et al., 2011, for further information). 

 

Table 1: Reference parameter values: horizontal permeability kh, anisotropy ratio kv/kh, 
porosity , pore compressibility p, van Genuchten  and m. 

 TF Shale V Sand V Shale 
kh, mD 0.002 *dep-dep. 0.1 
kv/kh 0.5 0.2 0.5 
 0.338 *dep-dep. 0.32 
p,10-10 Pa-1 14.5 4.9 14.5 
, 10-5 Pa-1 0.42 13 0.42 
m 0.457 0.457 0.457 

* Depth-dependent values shown in Figure 2. 

 
Figure 2: Estimated depth-dependent (a) V Sand permeability (natural logarithm), and (b) V 
Sand porosity. The blue dots are the data values, the solid red line is the estimated value, and 
the dotted red lines are ± two standard deviations. 

 

(a) 

(b) 
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For the V Sand permeability and porosity, data exists from sixteen hydrocarbon fields in the 
domain. Since a clear depth dependency was observed, as is shown in Figure 2, the trend 
associated with the depth was removed. A quadratic function was fitted for log-permeability, 
using a flat value below the vertex point. For porosity, a linear trend was assumed, since 
changing it to a quadratic function did not significantly decrease the residual (less than 1%). 
After the trend removal, Gaussian distributions for log-permeability and porosity were assumed. 
The standard deviation (STD) is 5.1E-1 and 3.1E-2 for log-permeability and porosity, 
respectively. Equations (2) and (3) define the trend parameters for the V Sand log-permeability 
(log kh) and porosity () as a function of elevation (z) and mean elevation (µz = −1723m), shown 
in Table 1.  

 log kh = p2 (z – µz)
2 + p1 (z – µz) + p0, if z > –3710 m (2) 

 p0, otherwise 

  = p1(z − µz) + p0  (3) 

	

Table 2: Trend parameters for V Sand log-permeability and porosity 

 p0 p1 p2 STD 
log kh 6.32 1.16e–3 2.93e–7 0.511 
 0.276 4.37e–5  3.08e–2 
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5. RESULTS 

5.1 BASE-CASE SIMULATION 

Figure 3 shows the plume evolution and pressure buildup at the reservoir-caprock interface. The 
pressure response to CO2 injection is fast and eventually affects a large region close to all the 
boundaries. The semi-permeable faults clearly affect the pressure response by confining the 
pressure buildup to the region of injection inside the faults. At the end of injection, the highest 
pressure occurs towards the updip direction of the fault. After injection, the pressure dissipates 
and returns back close to the hydrostatic. 

On the other hand, the CO2 plume migrates slowly. At the end of injection, the CO2 plume stays 
within a 5.0 km radius from the injection point. After injection ends, the plume continues 
migrating eastward driven by buoyancy, until it arrives at the fault around 100 years and is 
stopped from further migration.   

 
Figure 3: Evolution of pressure buildup (top row; P in MPa) and CO2 saturation (bottom 
row) at 20, 50, 100 and 200 yr (left to right columns). The solid thick black lines are fault 
locations. The thin black lines in the pressure buildup plots represent the 0.2 MPa-contour 
line. 

Figure 4 shows the time profiles of the three selected performance measures: CO2 saturation at 
Point A, pressure buildup at Point B, and spatial extent of overpressure zone (the area of pressure 
increase larger than 0.2 MPa at the reservoir-caprock interface). In Figure 4a, the CO2 saturation 
quickly increases as the plume arrives. After plume departure, the saturation decreases towards 
the residual saturation of 0.3. In Figure 4b, the pressure buildup occurs more smoothly. After the 
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peak at the end of the injection period (50 years), the pressure buildup decays towards zero. In 
Figure 4c, the overpressure zone increases quickly up to around 20 years, after which the 
increase slows down considerably. The distinct gradient changes (or bumps) can be seen in the 
overpressure-zone curve, which can be attributed to the pressure field reaching the lateral faults 
or arriving at the formation boundaries. In the post-injection period, the overpressure zone 
decreases quickly, again showing a steps-wise behavior; the transition of the steps (around 60 
years and 75 years) corresponds to the time when the pressure extent passes through the faults. 

 

 
Figure 4: Time profile of the performance measures for the reference parameter case: (a) 
CO2 saturation (SCO2), (b) pressure buildup (P), and (c) overpressure zone. 

5.2 UNCERTAINTY ANALYSIS 

To illustrate the overall effect of the parameter variations discussed in Section 4, 200 sets of 
parameters were generated for a Monte Carlo study, using the Latin hypercube scheme to sample 
from the Gaussian distributions with the variance being half of the parameter range. Figure 5 
shows 200 realizations of the three performance measures as a function of time; it illustrates the 
considerable variability in results stemming from the uncertainty in model inputs.  

 

 
Figure 5: Monte-Carlo simulation results; time profiles of the performance measures: (a) 
CO2 saturation (SCO2), (b) pressure buildup (P), and (c) overpressure zone. The red line is 
the mean at each time slice. 

(a) (b) (c) 

(a) (b) (c) 
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5.3 LOCAL SENSITIVITY 

The local sensitivity was computed using sixteen simulations. Figure 6 shows the time series of 
local sensitivity for three performance measures. In Figure 6a, for CO2 saturation (SCO2) at Point 
A, there are three dominant parameters: permeability (k), porosity (), and van Genuchten m, for 
the reservoir (V Sand). All three curves have two spikes, which correspond to the plume arrival 
and departure. Higher permeability and m lead to higher plume/brine mobility, which leads to 
positive sensitivity at the plume arrival (i.e., earlier arrival and higher SCO2) and negative 
sensitivity at plume departure (i.e., earlier departure and lower SCO2). The large porosity means 
more CO2 can be stored per unit volume of porous media by displacing resident brine at the 
arrival and more CO2 at the departure, so that porosity has the opposite effect of permeability 
and m. This result may support the development of simple analytical or semi-analytical solutions, 
or decoupled reservoir-only CO2 migration models. For example, this study found that the van 
Genuchten  has a negligible effect on far-field CO2 saturation, consistent with some of the 
analytical studies that neglect the capillary pressure (e.g., Nordbotten et al., 2009).  

The pore-size distribution index m has a large impact at the arrival but less at the departure. This 
is attributed to the specific implementation of the two-phase model in the current version of 
TOUGH2-MP/ECO2N, which uses the van Genuchten model for relative brine permeability (klr) 
and capillary pressure, and the Corey model for relative gas permeability—so that the relative 
gas permeability does not depend on m (Pruess et al., 1999). Since the derivative of relative brine 
permeability with respect to m (klr/m) increases in absolute magnitude towards full brine 
saturation, m is more influential near full brine saturation and hence at plume arrival. This result 
may change once the van Genuchten model with the hysteresis (Doughty, 2007) is implemented 
in TOUGH2-MP, which makes CO2 relative permeability dependent on m. The point to address 
here is that the sensitivity analysis is useful in identifying and understanding an effect that is 
potentially an artifact of model implementation. 

 

 
Figure 6: Local sensitivity results. (a) CO2 saturation at Point A, (b) pressure buildup at 
Point B, and (c) overpressure zone. Six most significant parameters are colored and labeled. 

 

For the pressure buildup at Point B (Figure 6b), in addition to permeability and m, the sensitivity 
to V Sand (reservoir) and V Shale compressibility () and TF Shale (caprock) permeability is 
visible. Although the profile is smoother than that of CO2 saturation, there is some oscillation 
around 85 years, which corresponds to the time of plume arrival at this location. The V Sand and 

(a) (b) (c) 
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TF Shale permeabilities have similar sensitivity trends, although the magnitude is different. This 
is because both are related to the dissipation of pressure in the system. The V Sand and V Shale 
compressibilities have a negative effect during injection, and a positive effect in the post-
injection period; higher compressibility creates larger absorption of pressure in the pore 
framework during the injection, and slower recovery (hence higher pressure) in the post-injection 
period. 

It is interesting to note that V Sand m has a positive sensitivity index on pressure, while reservoir 
permeability has a negative sensitivity index. This behavior is different from the CO2 saturation 
at Point A, where V Sand m and reservoir permeability follow the same sensitivity trend. A 
higher reservoir permeability reduces pressure over the entire domain, explaining the negative 
sensitivity. Changing the V Sand m parameter affects only the brine-CO2 mixture within the 
plume. Since a higher m increases the brine relative permeability in the brine-CO2 mixture, it 
accelerates plume migration and therefore increases the pressure outside the plume (thus a 
positive sensitivity). 

The overpressure zone in Figure 6c shows several spikes. These spikes correspond to the times 
when the boundaries of the overpressure zone arrive at pass through the faults. Reservoir 
permeability has first a positive spike since the larger permeability gives rise to a larger extent of 
the overpressure zone. In the post-injection period, the higher permeability helps the pressure to 
dissipate faster. The reservoir and shale compressibility have opposite effects.  

5.4 MORRIS SENSITIVITY 

In the Morris method, the EEs were computed using four partitions and ten paths. The total 
number of simulations was 160. Figure 7 shows the time profiles of mean EE from the Morris 
method. Although the mean of absolute EEs is computed as well, the results are not shown here, 
since the mean of absolute EEs did not provide additional information in this case. This is 
because the sign of EEs was mostly the same at each time slice so that the mean of absolute EEs 
was equal to the mean of EEs. 

Compared to the local sensitivity in Figure 6, the spikes are smoothed out over time, since the 
plume arrival/departure or pressure breakthrough time is more distributed. In terms of 
importance ranking and sign of effects, a conclusion is drawn similar to the local sensitivity 
analysis such as the V Sand permeability being a dominant parameter. However, there are some 
differences compared to the local sensitivity. 

In Figure 7a for the CO2 saturation at Point A, although the same three parameters are being 
identified as most influential, the porosity effect is more prominent at early times, and the V 
Sand permeability becomes dominant in the post-injection period. In Figure 7b for the pressure 
buildup at Point B, the sensitivity to the V Sand compressibility increases but sensitivity to the V 
Shale compressibility is smaller. In Figure 7c for the overpressure zone, sensitivity to reservoir 
compressibility and TF Shale permeability appear at early times.  
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Figure 7: Morris sensitivity results. (a) CO2 saturation at Point A, (b) pressure buildup at 
Point B, and (c) overpressure zone. Six most significant parameters are colored and labeled. 

 

In addition, a cross-plot of mean EE and standard deviation of EE (STD) at one time slice (20 
years) is shown in Figure 8. In this figure, parameters with higher STD, i.e., those that are closer 
to the black solid lines (Mean EE = ±2SEM), exhibit stronger nonlinearity or interaction effects. 
Note that the standard error of mean (SEM) was computed using the variance of EE and the 
number of paths. The parameters below the lines have a significant effect on the response, since 
2SEM represents the confidence interval of estimating the mean EE.  

In Figure 8a for the point CO2 saturation, the reservoir permeability and m have large mean EE 
and low SEM values; the porosity is close to the black line, indicating nonlinearity or interaction 
effects. In Figure 8b for the point pressure buildup, the reservoir and shale compressibility is 
close to the line. In Figure 8c for the overpressure zone, all the parameters are relatively close to 
the line compared to Figure 8a and b. In general, it was observed that parameters with higher 
SEM generally exhibit significant differences between results from the local sensitivity and 
Morris sensitivity analyses. 

 

 

Figure 8: Morris sensitivity results. Mean EE vs. STD: (a) CO2 saturation at Point A, (b) 
pressure buildup at Point B, and (c) overpressure zone. Six most significant parameters are 
colored and labeled.  

(a) (b) (c) 

(a) (b) (c) 
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5.5 SALTELLI SENSITIVITY 

Based on the results from the Morris method shown in Figure 7, five parameters were chosen for 
the Saltelli sensitivity analysis (V Sand permeability, porosity, compressibility, m, and TF Shale 
permeability). Saltelli sensitivities using 840 realizations were computed. Sets of parameters by 
Latin hypercube sampling were generated assuming the Gaussian distribution with the standard 
deviation being half of the range specified in Section 4. Figure 9 shows the time profile of 
Saltelli sensitivity. The sensitivity is normalized by the variance at each time slice, so that there 
are no peaks such as those that appeared in the Morris sensitivity in Figure 7. The sum of the 
sensitivity of each parameter, however, does not become one, since there exist nonlinear or 
interaction effects (Saltelli, 2008).  

 

 

Figure 9: Saltelli sensitivity results (a) CO2 saturation at Point A, (b) Pressure buildup at 
Point B, and (c) Overpressure extent.  

From this figure, more quantitative measures of sensitivity could be defined. For example, in 
Figure 9a for CO2 saturation in Point A, the V Sand van Genuchten m accounts for about 70% of 
the total variability of the output at time 30–50 years, while the V Sand permeability accounts for 
about 70% after 100 years (most of the post-injection period). The qualitative interpretation and 
ranking, however, are similar to the Morris mean EE, although the magnitude is different in 
some cases. 

(a) (b) (c) 
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6. DISCUSSION AND CONCLUSION 

6.1 COMPARISON OF THREE SENSITIVITY METHODS 

The results show that all the three considered sensitivity methods give similar interpretations and 
importance rankings, except when a parameter has a strong nonlinear effect or interacts with 
some other parameters—which is the case when a global SA is warranted. The local sensitivity 
appears sufficient to identify the most influential parameters in this study. Even for cases with 
nonlinear or interaction effects, the local sensitivity is still useful in improving system 
understanding (e.g., the high sensitivity of plume arrival/departure to parameters affecting CO2 
mobility). The sign of sensitivity (i.e., positive and negative effects) is useful to interpret and 
understand the effect of each parameter (e.g., permeability for dissipating the pressure) and to 
confirm the results by comparing them to intuition. The interpretation of the local sensitivity 
results helps understand the results from the Morris or Saltelli methods as well.  

The Morris sensitivity method has many uses, such as identifying positive or negative effects, 
and also selecting influential parameters. The mean EE, which is computed from many different 
reference values over the parameter space, can be considered as an averaged version of local 
sensitivity. The standard deviation of EE can be used to identify the presence of nonlinear or 
interaction effects. Plotting the mean EE and STD is useful to compare the parameter importance 
in the presence of nonlinearity/interactions. The advantage of the Morris method is the 
significance of sensitivity measures (e.g., Mean EE) under nonlinearity or interactions. The 
computational burden was relatively small compared to the Saltelli method. 

The Saltelli sensitivity method yields more rigorous and quantitative sensitivity measures in the 
context of UQ such as how much each parameter is responsible for the variability of the 
response. This measure would be useful to determine which parameter to neglect, considering 
X% of the variability in the system response during the risk assessment. One disadvantage is that 
as a variance-based measure, the Saltelli method does not provide the sign of the sensitivity (i.e., 
negative/positive effect), which is useful for the system understanding. The computational 
requirement is high, since it is based on Monte Carlo integration. 

6.2 IMPLICATIONS FOR THE CO2 STORAGE SYSTEM 

This study found that only three parameters are relevant on the predicted CO2 saturation: the 
reservoir (V Sand) permeability, porosity, and van Genuchten m. This would justify developing a 
simplified model, such as assuming a no-flow boundary at the reservoir-caprock interface 
without including the caprock, or neglecting the capillary pressure (e.g., Saripalli and McGrail, 
2002; Nordbotten et al. 2005; Nordbotten et al., 2009). The relative permeability, however, needs 
to be accounted accurately, since the sensitivity to van Genuchten m implies the importance of 
relative permeability of brine and CO2. To improve this model, it is essential to investigate the 
impact of different two-phase models, and also to account for hysteresis.  

It is surprising that the inter-bedded shale layers (V Shale) do not have any impact on the CO2 
saturation. It is not because heterogeneity is not important, but rather because the V Shale is 
continuous and always has much lower permeability than the V Sand in this analysis. As a result 
the CO2 plume does not enter the V Shale, but migrates horizontally through the sand layers. If 
the V Shale permeability became closer to that of V Sand or the V Shale layers were 
discontinuous, the CO2 could migrate through the shale layers vertically due to buoyancy, which 
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would change the CO2 saturation. Indeed the presence of the V shale layers affects the CO2 
plume extent and the arrival time to a point of interest in Zhou and Birkholzer (2011). It also 
implies that the interpretation of sensitivity is limited to the conceptual model (i.e., having 
continuous low-permeability shale layers in the reservoir). 

The pressure response depends on more parameters than the CO2 saturation, i.e., it is also 
sensitive to changes in the V Sand and V Shale compressibilities and TF shale (caprock) 
permeability. This confirms the findings from previous studies (e.g., Birkhozer, 2011), 
concluding that pressure-related risk analyses, such as induced seismicity, require a large-scale 
reservoir model that includes multiple layers.  

The time frames for pressure propagation and CO2 plume migration are different and so are the 
related sensitivities. The pressure buildup becomes highest at the end of the injection period, and 
quickly decays afterwards, whereas the CO2 plume keeps migrating beyond the injection period 
and stays above the residual saturation, although the CO2 plume extent is fairly limited during 
the injection. This implies that although the pressure-related risks disappear quickly after the 
injection ends, the CO2 leakage risk might persist for a longer time and in a larger area, since the 
CO2 can leak by buoyancy forces without overpressure. This feature will affect the risk profiles 
as a function of time. In particular, the risks of brine leakage may peak earlier than the risks of 
CO2 leakage, as the former mostly depends on the pressure buildup, while the latter depends on 
the CO2 extent and the locations of leaky pathways. 

The sensitivity results showed a clear trend of long-term sensitivity dominated by a few 
parameters, especially the permeability of the injection reservoir. While looking at a limited 
sample here (i.e., saturation at Point A, pressure buildup at Point B, and overpressure extent), 
one may infer from such results that long-term risk can be better predicted if reservoir 
permeability is well constrained. Fortunately, since the reservoir permeability also has a large 
impact on the pressure buildup during the injection, the permeability uncertainty could be 
reduced by history-matching during CO2 injection using an appropriate monitoring strategy. In 
addition, the findings in this study point to the importance of basic research focused on better 
understanding and characterizing intrinsic and/or relative permeability in the reservoir, including 
effects of spatial and temporal heterogeneity (e.g., Li et al., 2011). 

Readers, however, should be aware that this study is limited to the parameter sensitivities 
affecting CO2 saturation and pressure in the reservoir, although many insights were gained for 
the potential risks related to CO2 storage. Because the reservoir model in this study is not 
connected to actual leakage pathways, this study cannot answer the question as to how 
uncertainties in the reservoir may propagate into uncertainties of leakage rates and actual risk 
measures. An integrated sensitivity analysis—including the reservoir model, risk pathway 
models, and possibly risk effect models—would be needed to address which parameter in the 
reservoir model is the most important for a particular type of risk.  
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