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Abstract 
 

While the U.S. unconventional gas resource base is large, developing it in an 
economic and environmentally friendly way is challenging, due in part to the large 
uncertainty inherent in unconventional reservoirs. The objective of this research was to 
develop technology and tools to help operators determine optimal well spacing and 
completion strategies in highly uncertain and risky unconventional gas reservoirs as 
quickly as possible. 

Probabilistic reservoir models integrated with Bayesian decision models were 
developed to optimize development strategies in unconventional reservoirs. The 
integrated reservoir and decision models were applied in two case studies, one in Deep 
Basin tight gas sands in the Berland River area, Alberta, and one in the northern Barnett 
shale of Montague, Cooke, and Wise counties, Texas. 

In the first case study, probabilistic reservoir simulation models were configured 
to investigate the effect of downspacing in the Gething D formation, and to determine 
the optimal primary spacing and secondary downspacing for the reservoir. Two 
different reservoir simulation models were developed and integrated with Bayesian 
decision models – a single-well model and a multi-well model.  Monte Carlo simulation 
was utilized to predict production profiles for a wide variety of reservoir properties and 
different development scenarios. Geostatistical techniques were used to model 
dependencies in reservoir properties and production responses among wells. Under 
illustrative economic assumptions, we determined with both models that the optimal 
primary spacing is 160 acres with no downspacing in the second stage.  

In the second case study, we considered the northern Barnett shale formation 
located in the oil window within Montague, Cooke, and Wise counties. Probabilistic 
decline curves were used as the reservoir model. We correlated decline curve 
parameters with decision parameters and reservoir parameters using linear regression. 
We analyzed two different data sets of well and production data and found a clear 
correlation between decline curve parameters and perforated horizontal interval. 
Correlation of decline curve parameters to well spacing is less certain. While the 
correlations are low in these models, reflecting the large uncertainty inherent in shale 
reservoirs, we present an illustrative economic example to demonstrate how these 
integrated reservoir/decision models can aid operator decision making.  

The integrated reservoir/decision models developed in this study can provide 
decision makers with an understanding of the uncertainty inherent in unconventional 
gas reservoir development and allow them to evaluate tradeoffs between these risks 
and other factors, such as increased capital spending, to optimize well spacing and 
completion strategies. The methodologies developed in this project can be applied to 
other unconventional reservoirs with minor changes. 
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Executive Summary 
 

Unconventional’s share of U.S. oil and gas production has increased dramatically 
in the last 15 years. While the resource base is large, 847 Tcf technically recoverable 
according to the Annual Energy Outlook 2011 (EIA 2011), developing it in an economic 
and environmentally friendly way is challenging, due in part to the large uncertainty 
inherent in unconventional reservoirs. The objective of this research is to develop 
technology and tools to help operators determine optimal well spacing and completion 
strategies in highly uncertain and risky unconventional gas reservoirs as quickly as 
possible. 

Probabilistic reservoir models integrated with Bayesian decision models were 
developed to optimize development strategies in unconventional reservoirs. The 
integrated reservoir and decision models were applied in two case studies, one in Deep 
Basin tight gas sands in the Berland River area, Alberta, and one in the northern Barnett 
shale of Montague, Cooke, and Wise counties, Texas. 

In the first case study, we considered the Gething D formation in the Deep Basin 
tight gas sands. The reservoir was developed with vertical wells with well spacing 
ranging from 40 to 640 acres. Probabilistic reservoir simulation models were configured 
to investigate the effect of downspacing in the Gething D formation, and to determine 
the optimal primary spacing and secondary downspacing for the reservoir. Two 
different reservoir simulation models were developed and integrated with decision 
models – a single-well model and a multi-well model.   

The first model was a single-well, single-layer, single-phase reservoir simulation 
model. Monte Carlo simulation with a 1000 realizations was utilized to predict 
production profiles for a wide variety of reservoir properties and different development 
scenarios. Geostatistical techniques were used to model dependencies in reservoir 
properties and production responses among wells. Under illustrative economic 
assumptions, we determined the optimal primary spacing is 160 acres with no 
downspacing in the second stage.  

The second model built was a multi-well reservoir simulation model, which 
better modeled correlation and interference of production between wells. Sequential 
Gaussian Simulation (SGS) was used to generate 1,000 reservoir property maps. Those 
1,000 reservoir property maps were then included in reservoir simulation models to 
generate probabilistic production forecasts. The multi-well generated a better history 
match of actual production than the single-well model, while the optimal strategy 
remained the same as determined by the single-well model.  

In the second case study, we considered the northern Barnett shale formation 
was located in the oil window within Montague, Cooke, and Wise counties. The 
formation was developed using horizontal wells with multiple hydraulic fractures.  
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Probabilistic decline curves were used as the reservoir model. We correlated 
decline curve parameters (logarithm of initial oil rate, ln(qi), and the ratio of cumulative 
oil production at 6 months to 1 month, CP6to1) with decision parameters (primarily 
perforated interval and well spacing) and reservoir parameters using linear regression 
techniques. GOR for individual wells was modeled by combining a GOR type curve 
based on historical data with a linear regression model of initial GOR to thermal 
maturity. The oil production forecasts were multiplied by GOR to generate the gas 
production forecast.  

Two different data sets of well and production data were used for this integrated 
reservoir/decision modeling case study. In the first data set, 42 horizontal wells or leases 
with well spacing data available and at least 6 months production through December 
2010 were analyzed. In the regression models, ln(qi) is positively correlated with 
perforated interval with R2 equal to 29% and CP6to1 is positively related with well 
spacing and fracture fluid volume per perforated interval with R2 equal to 32%. 
Individual-well production increases as perforated interval and well spacing increase, 
while production normalized to a common area decreases as perforated interval and 
well spacing increase.  

In the second model, 84 wells with well spacing data available and at least 6 
months production through January 2011 were analyzed. In the regression models, 
ln(qi) is positively correlated with perforated interval with R2 equal to 21%; CP6to1 is 
negatively correlated with perforated interval and is correlated in a stepwise fashion 
with well spacing (R2 between CP6to1 and the two decision parameters totals 20%). 
Under illustrative economic assumptions, maximum average NPV/Capital for a single 
well equals 1.42, with P90, P50, and P10 values of 0.22, 0.87 and 3.07, respectively, at 
well spacing of approximately 340 ft and perforated interval of approximately 5500 ft.    

The different integrated reservoir and decision modeling systems developed in 
this project can help operators in unconventional gas reservoirs increase reserves and 
accelerate production, while protecting the environment, by determining the optimal 
well spacing and completion strategy as early in reservoir life as possible. These models 
provide decision makers with an understanding of the uncertainty inherent in 
unconventional gas reservoir development and allow them to evaluate tradeoffs 
between these risks and other factors such as increased capital spending. While specific 
strategies were determined for the two case studies presented, these results are specific 
to the reservoir properties and economic assumptions used in these applications and 
cannot be generalized. The methodologies developed in this project can be applied to 
other unconventional reservoirs with minor changes. 
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A INTRODUCTION 
A.1 Statement and Significance of the Problem 
 

According to the National Petroleum Council, North America has over 5000 trillion 

cubic feet (TCF) of natural gas resources in shale or tight sand formations. While this resource 

base is large, developing it in an economic and environmentally sensitive manner is 

challenging. For example, in the lower 48 United States, around 847 TCF of the shale gas and 

tight gas is estimated to be recoverable using existing technology. In specific development areas 

such as the Barnett Shale, current recovery per well averages just 7% of gas in place--far below 

the 20% that many believe is achievable. In addition to low recovery rates, operators in 

unconventional reservoirs must invest large amounts of capital and face significant risks.  

Reliance on unconventional gas is projected to increase with gas shales, tight gas sands, 

and coalbed methane playing a significant role. Despite our increased experience, 

unconventional plays remain risky. While geologic risk and volumetric uncertainty are less 

important than in conventional plays, complex heterogeneities and reservoir properties relating 

to producibility are key. In addition, drivers of profitability such as completion and stimulation 

efficiency are highly uncertain. In the face of this risk, operators must make sound development 

decisions such as optimal well spacings and completion practices. These decisions must balance 

the need to conserve capital and protect the environment by avoiding over drilling, with the 

objective of profitably maximizing production by achieving the optimal well spacing as quickly 

as possible. Previous unconventional gas developments, such as the Carthage Field (Cotton 

Valley), have taken decades to optimize well spacing (McKinney et al. 2002). In cases like this it 

was estimated, based on a hypothetical 500-well tight gas field, that suboptimal development 

could reduce the value of the unconventional asset by 50%, on the order of $100 million. This 

value loss is likely to be even greater in the current supply environment, which is likely to 

persist for the next several decades. Therefore, we must create more rapid development plans. 

For this reason, the National Petroleum Council recently recommended a "major increase in 

research funding" to "optimize drilling and completion methods" via integrated reservoir 
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characterization of geologic, seismic, petrophysical, and engineering data (NPC, 2007, pp. 196-

7). 

Historically, optimal well spacing has been determined by comparing the performance 

of wells drilled at different spacings using some form of statistical comparison. When data from 

multiple infill programs spanning 10-40 years are available, the risk of over drilling is fairly low. 

However, in emerging plays such as the non-core Barnett Shale, the Fayettville Shale, and many 

emerging tight gas sand plays, historical infill programs are not available to evaluate optimal 

spacing with traditional methods and we do not have the luxury of developing these fields over 

the next 40 years. 

Determining optimal completion and stimulation strategies can also be quite difficult, 

due both to technical challenges and to the difficulty of evaluating effectiveness of different 

completion and stimulation practices in these complex, highly heterogeneous reservoirs. As an 

example, stimulation treatments in the Barnett Shale have evolved from massive hydraulic 

fracture treatments in the 1980’s and 1990’s to the light-sand waterfracs being used today 

(Coulter et al. 2004). Reeves et al. (2000) illustrate the difficulty of determining stimulation 

effectiveness in unconventional tight gas sands.  

In summary, the nation must speed development of its tight sand and shale gas 

reservoirs. Historic development patterns are too slow to meet future demand and will further 

increase our reliance on non-domestic sources of gas—particularly gas from outside of North 

America. Operators would like to reach the optimal spacing and determine the optimal 

completion method as quickly as possible. However, the significant uncertainty present in 

unconventional reservoirs makes rapid development risky. Without a way to effectively 

manage this uncertainty, operators may under invest in the development of their assets and/or 

develop them more slowly. 
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A.2 Background and Existing Technologies/Methodologies 
Reservoir Modeling  

The most accurate way to optimize development of unconventional gas reservoirs is to 

conduct a complete integrated reservoir evaluation, including geological, geophysical, 

petrophysical, and reservoir engineering analyses and interpretations. This method includes 

developing a geological model of the study reservoir, estimating distributions of static reservoir 

properties such as porosity and permeability, constructing and calibrating a reservoir 

simulation model of the reservoir and wellbores, and then using the reservoir model to predict 

and optimize development of the reservoir. This is the method advocated by Anadarko 

(Newsham and Rushing 2001; Rushing and Newsham 2001). While it may be accurate, this 

approach can be prohibitively time-consuming and expensive. Given the marginal nature of 

unconventional gas resources, this approach is not often employed, particularly by small- to 

medium-sized operators with lean staffs.  

Various authors have proposed alternate approaches. For example, Guan et al. (2002) 

described a new technique for large-scale infill evaluations in tight gas reservoirs. The 

technique, referred to as Mosaic or moving window technology, was an extension of the 

method described by Voneiff and Cipolla (1996). The method consists of a multitude of local 

analyses, each in an areal window centered around an existing well. A model-based linear 4D 

regression equation is applied within each window: 

BY =  f(VBY, Gp/A, A) 

where  

BY =  best year, the best 12 consecutive months of production divided by 12. BY has 

been demonstrated to correlate well with long-term production and is used as a 

proxy for ultimate recovery. 

VBY =  virgin best year, the BY of a well at virgin conditions. Depletion effects are 

removed by computing the BY of a local area at a time before depletion using a 

2D regression of BY versus well start date. VBY is used as a proxy for kh, or 

reservoir quality. 

Gp/A = cumulative production divided by well spacing.  
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A = well spacing, area of Voronoi polygon around each well based on well locations.  

This is used as a proxy for drainage area. 

Once the regression equation coefficients are determined for each window, performance can be 

estimated for infill wells by substituting the appropriate values for candidate infill well 

conditions (well spacing, Gp/A, VBY).  The primary advantages of the moving window 

technique are its speed and its reliance upon only well location and production data. It is used 

to conduct infill screening studies of projects consisting of 1000’s of wells and can be used to 

evaluate an entire basin in a few man-days. 

Others have used simulation-based regression and automated prediction methods for 

selecting infill candidates (Chenget al. 2006; Cheng et al. 2006; Gao and McVay 2004). A 

reservoir simulator serves as the forward model, which calculates well production responses 

from reservoir description data. Sensitivity coefficients are calculated internally and used in the 

inversion of historical production data to estimate the porosity and permeability fields. Using 

the estimated property fields and forward model, expected performance of potential infill wells 

are determined using automated prediction methods. Since the method is simulation-based, all 

the data required to initialize a reservoir simulator are required for application. However, since 

the goal is rapid, approximate estimation of infill potential, the authors do not conduct a 

detailed reservoir characterization study. Instead, in an initial application, they simply use 

average properties from whatever data are available. The result is an approximate, but very 

fast, method for assessing infill performance in unconventional gas reservoirs. Gao and McVay 

(2004) demonstrated that this method is more accurate than moving window methods, with 

comparable data requirements and computation time. 

Teufel et al. (2004), in a US DOE-sponsored project, developed an approximate tool 

called the Infill Well Locator Calculator (IWLC) to assist operators in the drilling of infill wells 

in low-permeability gas reservoirs. This tool was applied to evaluate infill potential in the 

Mesaverde Group in San Juan Basin. The tool is versatile, but only provides a qualitative 

evaluation of infill performance since it ignores heterogeneity within the test area. In addition, it 

provides only a deterministic assessment and does not quantitatively consider the large 

uncertainty inherent in the assessment. 
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Decision Modeling 

Decision analysis (DA) and uncertainty quantification (UQ) methodologies were 

introduced to the oil and gas industry almost 50 years ago (Grayson 1960). Most large 

companies (the Majors) have decision and risk analysis groups that analyze the risk and 

profitability of major assets. However, mid-size and small operators still rely primarily on 

deterministic estimates (Bickel and Bratvold 2007). While the Majors have applied DA/UQ 

extensively, the vast majority of these applications have been in the context of conventional 

hydrocarbon accumulations. Unconventional resources pose special challenges (Haskett and 

Brown 2005; Stabell 2005). For example, volumetric uncertainty is the primary risk in 

conventional plays, while risks related to producibility are key in unconventional reservoirs. In 

addition to the lack of experience in unconventional plays, the industry as a whole does not 

rigorously estimate the value of its information gathering and pilot programs (Bratvold et al. 

2007). The optimal design of such programs in unconventional reservoirs, where the risks are 

high, are likely to pay large dividends. For example, optimal exploration programs can turn 

uneconomic reservoirs into profitable plays (Bickel and Smith 2006; Bickel et al. 2011. 

 

A.3 Objective of the project 
A major long-term goal of our research program is the development of technology and 

tools to optimize exploitation of unconventional resources in the U.S. and worldwide for the 

public benefit. Given the considerable uncertainty associated with these resources, a second 

long-term goal is to develop and disseminate the tools and methodologies that enable oil and 

gas operators to make the best decisions in the face of significant uncertainty and risk. Previous 

work in this area has focused on the optimal use of 3D and 4D seismic (Bickel et al. 2006; Gibson 

et al. 2007), the development of optimal sequential exploration programs (Bickel and Smith 

2006; Bickel et al. 2011), and probabilistic methods for assessing unconventional reserves and 

potential resources (Cheng et al. 2007; Salazar et al. 2007). 

The specific objectives of this project were to (1) develop integrated reservoir and 

decision models to help operators in unconventional gas reservoirs increase reserves and 

accelerate production, while protecting the environment, by determining the optimal well 
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spacing and completion strategy as quickly as possible, and (2) apply these integrated reservoir 

and decision models to two unconventional plays, Deep Basin tight sands and Northern Barnett 

shale.    

B CASE STUDY 1: DEEP BASIN TIGHT SANDS 
B.1 Introduction of Deep Basin tight sands 

The Deep Basin is located in western Alberta, Canada (Fig. 1). Discovered in 1976, the 

Deep Basin is considered as one of North America's giant gas fields, with gas reserves ranging 

between 50 to 150 Tcf (Masters 1979). Fig. 2 depicts the stratigraphic column of the lower 

Cretaceous in the Deep Basin area. The depositional environments in the red highlighted 

interval are: (1) Cadomin - alluvial fan and plain, (2) Gething - fluvial deposits and flood plain, 

(3) Bluesky - shoreface sand and shales (Smith et al. 1984). The formation of interest in this 

study is the Gething. 

The Gething formation consists primarily of interbedded very-fine- to medium-grained 

sandstones, siltstones, mudstones and coal sediments. The sequence is terrestrial and is 

described as a low-relief interior drainage plain. Sandstones are fining upward or thin-bedded. 

Trough and planar cross-bedded, ripple-bedded and parallel-laminated sandstones are 

common. The representative drainage pattern of the Gething sandstones is a series of active 

channel systems that generally trended northeast at the time of deposition. The implication of 

this depositional environment is that Gething reservoirs often consist of layered, discontinuous, 

heterogeneous sands that are challenging to describe and develop. 
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Fig. 1—Location map showing Deep Basin of Alberta (Smith et al. 1984). 

 

 
Fig. 2—Stratigraphic column of the Lower Cretaceous in the Deep Basin area (modified 

from Hietala and Connolly 1984). 
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B.2 Reservoir Model 

B.2.1 Objective of Reservoir Model 
The core of the technology developed in this work is a reservoir model that involves 

explicit modeling of subsurface uncertainty and a decision model that incorporates uncertainty 

to optimally manage risk (Fig. 3). The reservoir model uses Monte Carlo methods and single-

well reservoir simulation to predict production profiles for a wide variety of reservoir 

properties and different development scenarios. Geostatistical techniques are used to model 

dependencies in reservoir properties and production responses among wells. To integrate all 

the different techniques used in constructing the reservoir model and automate the performing 

of thousands of simulations, Microsoft Visual Basic® for Applications (VBA) code was 

developed. In this way, the reservoir model can provide a full spectrum of production profiles 

under different downspacing scenarios. 

 

 
 

Fig. 3— Schematic illustration of the integrated reservoir and decision modeling tools. 
 

B.2.2 Monte Carlo Simulation with Reservoir Simulation 
Most tight gas reservoirs are characterized by complex geological, geophysical and 

petrophysical properties and a high level of heterogeneity and, hence, involve considerable 

uncertainty. Because of the large number of unknowns in the spatial distribution of reservoir 

properties, a deterministic approach remains inadequate to quantify the range of variability and 

assess the risk in outcomes such as cumulative gas production or net present value. 

Consequently, to model production uncertainties and quantify the risk involved in the 

development decisions, a stochastic modeling tool, @RISK from the Palisade Corporation, was 

coupled to the reservoir simulator IMEX from Computer Modeling Group. This allowed the 
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generation of thousands of simulations to evaluate combinations of unknown parameters 

within their ranges of uncertainty.  

A single-well, one-layer, single-phase reservoir simulation model was built for modeling 

the Deep Basin (Gething) reservoir. Although the Gething reservoir is a commingled, multilayer 

system, it is dominated by the Gething D interval when present. We modeled only the Gething 

D sand because it can be represented by a single simulation layer for simplicity and, in 

particular, for speed, since the simulations are done in a Monte Carlo context. The reservoir grid 

was constructed to model a hydraulically fractured well located centrally in a rectangular 

drainage area. 

A VBA code was generated in Excel® to perform thousands of simulations 

automatically. An IMEX input file template was created in Excel and uncertain parameters were 

defined by @RISK distribution functions. Fig. 4 is a block diagram representation of the 

applications and tools used in the construction of the Gething reservoir model. The uncertain 

parameters and their associated distributions used in modeling the Deep Basin (Gething D) 

reservoir are presented in Table 1. Histograms and cumulative probability distribution 

functions of these uncertain input variables are illustrated in Fig. 5. In addition to the 

parameters defined in Table 1, the average reservoir pressure is also uncertain since it is 

computed in the model by multiplying a constant pressure gradient by the formation depth, 

which itself is an uncertain variable.  
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Fig. 4— Block diagram representation of the applications and tools used in this study. 
 

 

Fig. 5 – Histograms and probability distribution functions of uncertain input variables 
used in the modeling of the Deep Basin (Gething D) reservoir: (a) net pay, (b) porosity, (c) 

formation depth, (d) reservoir size. 
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Table 1 — Uncertain input variables involved in the modeling of Deep Basin (Gething D) 
reservoir (data from UGR) 

 

 
 
 

The permeability model is based on a porosity-permeability relationship conditioned to 

core data from the field and well performance data. The correlation is given by    

 ( )0.0071ln Porosity Gas*517.47exp*92.1)( +=mdgask ………………………………… (1) 

Uncertainty is incorporated into the permeability model as well by making it a random 

variable. The expression inside the exponential function is assigned as the mean of a normal 

distribution with a standard deviation of 0.55. This model results in a log-normal distribution 

for permeability (Fig. 6) and a cloud on a semi-log porosity-permeability plot (Fig. 7).   

Reservoirs that originate in non-marine, fluvial channel environments such as the Deep 

Basin (Gething) reservoir are often characterized by laterally discontinuous sand bodies. The 

fluvial channel geometry is generally defined by an elongated length/width (aspect) ratio. An 

aspect ratio of 7 was used in the modeling of the Deep Basin (Gething) reservoir.   

 

Fig. 6 — (a) Probability distribution plot (PDF), (b) cumulative distribution plot (CDF) of 
permeability. 
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Fig. 7 — Porosity-permeability cloud. 
 

We model a quarter of the drainage area, as is typically done for single-hydraulically-

fractured-well models. Fig. 8 displays x- and y-direction centroids for the grid. The grid 

includes a hydraulic fracture near the wellbore, along the x-axis. To accurately model gas flow 

in the hydraulically fractured well, the hydraulic fracture is explicitly modeled by refined grids 

along the fracture and around the wellbore (Fig. 8).   

Other input parameters in the Gething D reservoir model are listed in Table 2. The 

hydraulic fracture has a half-length of 200 ft, a simulated width of 0.04 ft, and a dimensionless 

fracture conductivity (FcD) of 1.3. The fracture permeability is computed as:  

 
w

kfLcDF
mdfk

**
)( = ………………………………………………………………….(2) 

Since permeability is a random variable, unrealistically large values of fracture 

permeability can result from using a fixed FcD. Thus, the fracture conductivity, fwk , was limited 

to a maximum value of 150 md-ft, which means that the fracture permeability, fk , cannot 

exceed 3750 md. 
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Fig. 8 — Gridblocks model based on an aspect ratio of 7: (a) x-direction centroids, (b) y-

direction centroids. 
 
 

Table 2  — Input parameters employed in the Deep Basin (Gething D) reservoir model 
(data from UGR) 

 
 

B.2.3 Probabilistic Reservoir Model and Decision Context. 
The Gething probabilistic reservoir model was configured to illustrate the effect of 

downspacing in the Deep Basin area, and to determine the optimal development strategy for 

the reservoir. Specifically, the decision context modeled consists of two development decisions: 

the primary and secondary well spacings. The intention is to start development on a particular 

well spacing (640, 320, 160 or 80 acres) and then decide on whether to downspace or not based 

on results of production at the primary spacing for a particular period of time. Thus, the model 

evaluates all possible two-stage downspacing combinations between 640, 320, 160 and 80 acres 

(Table 3) and simulation results quantify best-month production, stage-end average pressure, 

discounted stage production and 20-year discounted cumulative production for each well. 

The reservoir model is established assuming the drilling of up to 8 wells in a section 

(Fig. 9a). The wells are numbered consistent with the order in which they would be drilled if 

spacing was progressively reduced from 640-ac spacing to 320-ac, 160-ac, and then 80-ac 
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spacing. For simplicity and shorter computation times, only four of the eight wells (Fig. 9b) are 

modeled explicitly. Wells 1 through 4 correspond to well spacings of 640, 320, 160 and 80 acres, 

respectively. For each downspacing combination, only one well is simulated representing all the 

wells that will be drilled at each stage (Fig. 10). For instance, when downspacing from 320 acres 

(Stage 1) to 80 acres (Stage 2), 2 wells are produced in Stage 1 and 6 more are drilled in Stage 2. 

In this case, Well 2 and Well 4 will be simulated to represent all Stage 1 and Stage 2 wells, 

respectively. The production values from the one well simulated in Stage 1 are multiplied by 2 

and the production values from the one well simulated in Stage 2 are multiplied by 6. To 

account for areal variability in reservoir properties at different well locations, all four wells are 

modeled individually, but sampled from the same probabilistic distributions. In this way, the 

reservoir heterogeneity is modeled in an approximate fashion even though single-well 

modeling is used.  

Table 3 — Possible downspacing combinations evaluated in the final reservoir model 

 

 
Fig. 9 — Schematic illustration showing (a) possible well locations, (b) representative well 

locations. 
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Fig. 10 — Possible two-stage downspacing combinations. Numbers on top of arrows 

indicate Stage 1 wells and additional Stage 2 wells. Wells 1 through 4 are the representative 
wells. 

 
The initial reservoir pressure of the first-stage wells is computed using the initial pore 

pressure gradient of 0.28 psi/ft. Assignment of initial reservoir pressure for second-stage wells is 

complicated by the possibility of pressure interference and was modeled probabilistically. 

Pressure interference between first- and second-stage wells depends on the well spacing, i.e., 

number of wells drilled in a section and areas that are being drained by these wells. One would 

expect a greater chance of pressure communication between wells when the field is developed 

on a smaller spacing; as more wells are drilled, the probability of pressure interference 

increases. Also, the greater the reservoir (sand-body) size of each well, the greater the chance of 

communication between adjacent wells. We estimated the probability of pressure 

communication between wells for the various combinations of first- and second-stage well 

spacing and reservoir size and applied these discrete probabilities in the reservoir modeling. 

Based on the probability for a particular case, the Stage 2 well is either in pressure 

communication with the Stage 1 well (in which case the average reservoir pressure at the end of 

Stage 1 is designated as the initial pressure of the Stage 2 well) or it is not in communication (in 

which case the initial pressure of the Stage 2 well is set at the time-zero initial reservoir 

pressure). 

Completion efficiency risk of Deep Basin (Gething) wells was also modeled 

probabilistically. Based on information provided by UGR, a stimulation failure rate of 10% was 

assumed and incorporated into the reservoir model. Thus, there was a 10% probability of 
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stimulation failure, in which case the fracture permeability fk is set equal to the formation 

permeability. Otherwise, the fracture permeability is defined by Eq. 2.  

B.2.4 Geostatistical Model 
Spatial correlation of reservoir properties affects dependencies in production responses 

between wells, which are needed in decision modeling. We developed spatial correlations of 

reservoir properties in the Deep Basin (Gething D) reservoir from geostatistical data included in 

an integrated reservoir study provided by UGR. From the spatial correlation data, we 

determined the correlation coefficients for reservoir properties between well locations separated 

by specific distances.  

Porosity and porosity variogram maps of a 13x7-section study area are shown in Fig. 11 

and Fig. 12a, respectively. Based on the variogram map, the major and minor continuity 

directions for porosity are determined to be 68° and 338°, respectively. The corresponding major 

and minor direction empirical variograms and the theoretical models fitted to these 

experimental variograms are shown in Fig. 12b and c. These empirical variograms are of 

exponential type with a sill of 1.055 and nugget of 0.034. The major range is established as 3913 

m and the minor range as 2015 m. Fitting an exponential model to the empirical porosity 

variograms, the theoretical variograms were calculated for both major and minor directions of 

continuity, along with their associated covariance and correlation functions (Fig. 12d and e). 

Similar analyses were performed for net pay and permeability. The correlation plots were used 

to compute the correlation coefficients for reservoir properties based on the distances between 

planned well locations in a section. Table 4 – Table 6 present the correlation matrices 

displaying the correlation coefficients between all well pairs for porosity, net pay thickness and 

permeability. These correlation coefficients were then incorporated into the probabilistic 

reservoir model to account for dependencies in reservoir properties between wells. 
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Fig. 11 — Porosity map of the Deep Basin (Gething D) reservoir (provided by UGR). 



31 

 
Fig. 12 – Variogram analysis for porosity: (a) Variogram map (distances are in meters),  

(b) major and (c) minor direction empirical variograms, (d) major and (e) minor direction 
theoretical variograms with covariance and correlation functions (data from Deep Basin 

(Gething D) provided by UGR). 
 
 

  

Distance, m 

Distance, m 
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Table 4 — Correlation matrix for porosity 

 
 

Table 5 — Correlation matrix for net pay 

 
 

Table 6 — Correlation matrix for permeability 

 
B.2.5 Reservoir Simulation Results 

Reservoir simulation combined with Monte Carlo analysis provided a practical and 

quick method to generate a multitude of production forecasts with various reservoir properties 

under different development scenarios. These production profiles were incorporated into a 

flexible decision model, which allowed calculation of the expected net present value for each 

scenario and selection of the optimal development strategy. To facilitate the integration of the 

reservoir and decision models, discounted stage cumulative production values were used in the 

decision model. The discounted stage cumulative production for each drilling location was 

summarized by its mean, standard deviation and pair-wise correlation coefficients between it 

and all other well locations. This information was used to specify a joint probability distribution 

for each development scenario. 

The reservoir model was run with 1-, 3- and 5-year Stage-1 durations to understand the 

trade-off between Stage-1 duration and well spacing. We refer to the wells drilled during Stage 

1 (S1) as “Package 1” (P1) and the new wells drilled during Stage 2 (S2) as “Package 2” (P2). 

Only P1 wells produce during S1, while both P1 and P2 wells produce during S2. The wells in 

each stage will be drilled on spacings of 640, 320, 160, or 80 acres. Thus, each stage decision is 
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defined by four numbers: stage, package, spacing, and duration. For example, S1-P1-320-1 

signifies that wells were drilled on 320-acre spacing during Stage 1 and produced for 1 year.  

The reservoir model forecasts production vs. time, from which we calculate discounted-

cumulative-production (DCP) at a discount rate of 10%. We take the natural logarithm of this 

quantity and refer to it as ln-DCP. Fig. 13 display scatter plots of S2 ln-DCP versus S1 ln-DCP 

for P1 and P2. In particular, both figures are for the case where S1 was drilled on 640-acre 

spacing and produced for one year (S1-P1-640-1). Fig. 13a presents the S2 production of P1 if we 

downspace to 80 acres (i.e., how the original P1 well performs over the remaining 19 years in 

the presence of the seven new wells). Fig. 13b relates the 19-year ln-DCP from an 80-acre S2-P2 

(S2-P2-80-19) to S1 production. The correlations between Stages 1 and 2 for P1 are 0.83 when 

going from 640s to 80s and 0.60 for P2 when going from 640s to 80s. Because of this relationship, 

we can use the S1 production to forecast mean S2 production and the accompanying 

uncertainty. To do so, we assume that the uncertainty between stages is jointly lognormally 

distributed (i.e., ln-DCP is jointly normal between stages). Under this assumption, the posterior 

mean μ2|1 and standard deviation σ2|1 of S2 ln-DCP given S1 ln-DCP (ln Q1) is 

 1 1
2|1 2 2

1

ln −
= +

Q µ
µ µ ρσ

σ
……………………………………………………………….(3) 

 
1

2 2
2|1 2 (1 )= −σ σ ρ ………………………………………………………………………(4) 

where μ2 and σ2 are the prior mean and standard deviation, respectively, of S2 ln-DCP. 

Likewise, μ1 and σ1 are the prior mean and standard deviation for S1 ln-DCP. The correlation 

between S1 and S2 is ρ. Although we do not explicitly show this in our notation, the means and 

standard deviations for each stage are functions of the package, spacing, and stage length.  

Table 7 presents the mean production, standard deviation, and correlation for each 

possible S1-S2 spacing combination with a 1-year S1 pilot phase. We see that S1-P1 production 

tells us more (has a higher correlation coefficient) about how P1 will perform in Stage 2 than 

how P2 will perform. This is understandable since P2 is a completely new set of wells. 

However, the correlation between S2-P2 is still greater than 0.50, which is quite robust. We also 

see that correlations generally increase with increased downspacing, although they begin to 
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decrease beyond 160-acre spacing for P1. We believe this is related to the assumptions 

regarding reservoir size, which has a triangular distribution with a most-likely reservoir size of 

160 acres (Table 1). Table 8 and Table 9 present these same statistics for a 3-year S1 and a 5-year 

S1, respectively. We notice the same trends as for a 1-year S1. However, by comparing between 

the tables we see that increasing the length of S1 decreases the correlation with S2 performance, 

which may be counter-intuitive. We believe this is related to the onset of depletion effects in 

Stage 1. Permeabilities in the Gething are relatively high for tight gas reservoirs, which results 

in boundary-dominated flow being reached within a couple of years in many cases (and 

sometimes months for certain combinations of permeability and reservoir size). 

 
Fig. 13 — Crossplots of natural log of individual-well, discounted stage production 

(MMscf) downspacing from 640 to 80 ac after a 1-yr Stage 1, (a) Stage 2 vs Stage 1 of the 
original well, and (b) the infill well in Stage 2 vs the original well in Stage 1. 
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Table 7—Statistics for natural log of individual-well, discounted stage production (MMscf) 
for original and infill wells for a 1-year Stage 1 

 

 
 

Table 8 — Statistics for natural log of individual-well, discounted stage production (MMscf) for original and 
infill wells for a 3-year Stage 1 

 

 
 
  

S1-P1
spacing 640 640 320 160 80 640 320 160 80
mean, µ 5.61 6.29 6.27 6.24 5.81 6.44 6.08 5.73
std dev, σ 0.71 0.79 0.76 0.59 0.54 0.74 0.65 0.60
corr, ρ 1.00 0.76 0.77 0.86 0.83 0.32 0.49 0.60

spacing 320 640 320 160 80 640 320 160 80
mean, µ 5.60 6.26 6.18 5.80 6.14 5.78
std dev, σ 0.73 0.77 0.62 0.56 0.65 0.61
corr, ρ 1.00 0.78 0.85 0.84 0.52 0.60

spacing 160 640 320 160 80 640 320 160 80
mean, µ 5.10 6.10 5.76 5.85
std dev, σ 0.75 0.60 0.54 0.57
corr, ρ 1.00 0.89 0.87 0.64

spacing 80 640 320 160 80 640 320 160 80
mean, µ 4.99 5.62
std dev, σ 0.73 0.53
corr, ρ 1.00 0.82

S2-P1 S2-P2
1-Year Pilot Phase

S1-P1
spacing 640 640 320 160 80 640 320 160 80
mean, µ 6.22 5.70 5.67 5.63 5.23 5.87 5.54 5.24
std dev, σ 0.72 0.97 0.94 0.73 0.68 0.94 0.84 0.79
corr, ρ 1.00 0.73 0.73 0.78 0.74 0.36 0.46 0.51

spacing 320
mean, µ 6.20 5.65 5.58 5.21 5.68 5.35
std dev, σ 0.72 0.94 0.75 0.68 0.84 0.79
corr, ρ 1.00 0.72 0.77 0.74 0.41 0.53

spacing 160
mean, µ 5.82 5.57 5.25 5.49
std dev, σ 0.71 0.59 0.54 0.65
corr, ρ 1.00 0.78 0.75 0.50

spacing 80
mean, µ 5.63 4.94
std dev, σ 0.68 0.54
corr, ρ 1.00 0.64

3-Year Pilot Phase
S2-P1 S2-P2
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Table 9 — Statistics for natural log of individual-well, discounted stage production 
(MMscf) for original and infill wells for a 5-year Stage 1 

 

 
 

B.3 Decision Model 

B.3.1 Overview 
We can use the reservoir simulation results described above to choose the optimal Stage 

1 and Stage 2 spacing strategy. To do so we use the schematic decision tree summarized in Fig. 

14. We begin by choosing an initial spacing. We then observe S1 production results. Given these 

results, we make a S2 spacing decision and finally observe Stage 2 production. We assume that 

our objective is to maximize expected net present value (ENPV). Though not explicitly shown in 

this simple decision tree, our model does not allow the operator to choose a Stage 2 spacing that 

is greater than Stage 1. Likewise, selecting the same spacing in Stages 2 and 1 is simply a 

decision not to downspace. 

These trees are solved starting at the end (right) and “rolling-back.” Thus, we cannot 

make the optimal S1 decision without first determining the optimal S2 spacing given every 

possible S1 outcome. To simplify this procedure, we discretize the production uncertainties 

with discrete probability mass functions containing five branches. Specifically, we weight the 

P99.8, P91.2, P50, P8.8, and P0.2 of the excess distribution function (i.e., the probability of 

exceeding a particular production level) by 0.011, 0.222, 0.533, 0.222, and 0.011, respectively 

S1-P1
spacing 640 640 320 160 80 640 320 160 80
mean, µ 6.43 5.19 5.16 5.12 4.74 5.39 5.08 4.80
std dev, σ 0.72 1.05 1.02 0.81 0.76 1.07 1.00 0.92
corr, ρ 1.00 0.69 0.69 0.71 0.67 0.30 0.39 0.45

spacing 320
mean, µ 6.42 5.13 5.06 4.71 5.27 4.95
std dev, σ 0.71 1.02 0.83 0.77 0.98 0.92
corr, ρ 1.00 0.69 0.71 0.68 0.37 0.42

spacing 160
mean, µ 6.08 5.09 4.80 5.18
std dev, σ 0.68 0.59 0.55 0.70
corr, ρ 1.00 0.71 0.66 0.42

spacing 80
mean, µ 5.84 4.34
std dev, σ 0.62 0.58
corr, ρ 1.00 0.50

5-Year Pilot Phase
S2-P1 S2-P2
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(Miller and Rice, 1983; Bickel et al. 2010). These weights and fractiles may seem odd, but they 

are selected to match the moments of a normal distribution. In so doing, they will preserve the 

moments of the lognormal distribution as well. Some readers may be familiar with Swanson’s 

Mean or Extended-Swanson-Megill (ESM) (Megill 1984; Hurst et al. 2000), which weight the 

P90, P50, and P10 by 0.25, 0.50, and 0.25, respectively. This method is widely applied directly to 

the percentiles of lognormal distributions. This practice significantly misestimates the moments 

of all non-normal distributions and is strongly discouraged (Bickel et al. 2010). In our case, we 

have developed a five-point approximation (Bickel et al. 2010) to both improve the accuracy of 

our method and better illustrate the impact that learning between stages has on decision 

making. Monte Carlo (MC) simulation would not work well in this case because we are 

interested in generating an optimal S2 policy based on the results of S1 production. Under MC, 

we might have thousands of trials for S1, each of which would lead to an optimal S2 policy. This 

wealth of data would be difficult to communicate to decision makers. As Bickel et al. (2011) 

demonstrate, well-designed discretization methods that use only a few points (3 or 5) are 

equivalent to thousands, if not hundreds of thousands, of MC trials. Please see Appendix B and 

Appendix C for the full discussion.  

The novel methods explained in these appendices, which were developed during this 

research, were used to determine the appropriate discretization method. These methods will 

have broad applications in the oil and gas industry. 

 
Fig. 14 — Schematic decision tree for optimal spacing decision. 
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B.3.2 Illustrative Example 
We applied the integrated reservoir and decision models described above to a 

hypothetical case based on the Deep Basin (Gething D) formation. We made the following 

illustrative economic assumptions: 

 

Gas Price: $5.50 per Mcf 

Marginal Cost: $1.00 per Mcf 

Fixed Cost: $50,000 per year per well 

Drilling Cost: $1.5 MM per well 

Discount Rate: 10% 

No royalty 

 

In this paper, we do not consider uncertainty in these economic parameters in order to 

focus attention on subsurface uncertainties. However, there is nothing in our method that 

would preclude this and any actual application should include market uncertainties. 

A summary of our results for a 1-year Stage 1 appears in Fig. 15. Economics are 

computed on a section basis. Suppose we begin with a spacing of 640 acres. If we observe low 

production during the first year (P99.8), the optimal S2 spacing is to stay with 640 acres. The 

NPV of this scenario is $0.43 MM. If we instead observe higher production (P91.2), the optimal 

S2 decision is to downspace to 320 acres, which has an NPV of $1.22 MM. We would also 

downspace to 320 acres if we observed P50 production. Observing high production (P8.8) 

would make it economic to downspace to 160 acres, with an associated NPV of $8.04 MM. 

Under very high S1 production (P0.2), we would downspace all the way to 80 acres and earn an 

NPV $19.49 MM. Weighting each of these production scenarios by their probability of 

occurrence, we obtain an ENPV for an initial 640-acre spacing of $4.05 MM. 

This first example clearly demonstrates the value of an optimal dynamic strategy, which 

takes advantage of information gained during the first stage. For example, if one had to commit 

to 640-acre spacing from the outset and could not downspace, we calculate (not shown) that the 
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ENPV would be $2.92 MM, or over $1 MM (25%) less. This $1 MM difference is the value of the 

information that is gained via the staged strategy. Thus, we see the value that can be gained 

through better use of information and better decision making. This level of improvement is 

typical (see Bickel and Smith (2006) and Bickel et al. (2008) for another example).  

Fig. 15 includes a similar analysis for each S1 spacing followed by optimal S2 spacing. 

For example, under an initial spacing of 320 acres, we would downspace to 160 acres if we 

observed P50 or greater production. Under either 160- or 80-acre initial spacings, we would not 

downspace under any S1 production scenario. The ENPVs for initial spacings of 640, 320, 160, 

and 80 acres are $4.05 MM, $5.93 MM, $6.75 MM, and $5.09 MM, respectively. Thus, the optimal 

S1 spacing is 160 acres, in which case we will not downspace during S2. This does not imply 

that downspacing is never beneficial. These results are specific to the particular reservoir model 

and economic assumptions used in this illustrative example. 

Fig. 16 presents our results for a 3-year and 5-year S1. The best initial spacing in each of 

these cases is also 160 acres. The ENPV for the 3-year Stage 1 is $6.22 MM, while it is $5.90 MM 

for a 5-year Stage 1. Thus, there is no economic benefit to extending the S1 duration beyond 1 

year to either 3 years or 5 years, which is due in part to the decreasing correlation of S2 to S1 

performance with increased S1 duration as discussed earlier. The complete optimal policy is a 1-

year Stage 1 on 160 acres followed by no downspacing. Again, these results are specific to the 

reservoir properties and economic assumptions used in this example and cannot be generalized.  
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Fig. 15 — Optimal policy and ENPVs for our illustrative example with 1-year Stage 1. 

Monetary values in $MM/section. 
 

 
Fig. 16 — Optimal policy and ENPVs for our illustrative example with 3-year and 5-year 

Stage 1. Monetary values in $MM/section. 

Stage 2 Stage 1 Stage 2 Total
spacing prob prod opt space S1 E[NPV] S2 NPV NPV

640 0.011 P99.8 640 0.04$      0.39$      0.43$      
4.05$           0.222 P91.2 320 0.04$      1.18$      1.22$      

0.533 P50 320 0.04$      3.26$      3.31$      
0.222 P8.8 160 0.04$      8.00$      8.04$      
0.011 P0.2 80 0.04$      19.45$    19.49$    

320 0.011 P99.8 320 0.10$      0.76$      0.86$      
5.93$           0.222 P91.2 320 0.10$      2.00$      2.10$      

0.533 P50 160 0.10$      4.67$      4.77$      
0.222 P8.8 160 0.10$      11.63$    11.73$    
0.011 P0.2 160 0.10$      26.69$    26.78$    

160 0.011 P99.8 160 (2.26)$     1.58$      (0.67)$     
6.75$           0.222 P91.2 160 (2.26)$     3.72$      1.46$      

0.533 P50 160 (2.26)$     7.81$      5.55$      
0.222 P8.8 160 (2.26)$     16.18$    13.92$    
0.011 P0.2 160 (2.26)$     36.01$    33.75$    

80 0.011 P99.8 80 (5.46)$     2.54$      (2.92)$     
5.09$           0.222 P91.2 80 (5.46)$     5.18$      (0.28)$     

0.533 P50 80 (5.46)$     9.58$      4.12$      
0.222 P8.8 80 (5.46)$     17.47$    12.01$    
0.011 P0.2 80 (5.46)$     33.71$    28.25$    

Stage 1
1-Year Stage One
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B.4 Multi-Well Reservoir Simulation Model 

B.4.1 Overview 
We implemented in this part a probabilistic, multi-well reservoir model based on 

reservoir simulation techniques coupled with stochastic methods and geostatistical 

characterization. Two major extensions over the previous probabilistic single-well model 

described above (and in Turkarslan et al. 2010) are: (1) key reservoir parameters are 

incorporated in the form of areal reservoir property maps obtained through geostatistical 

procedures and (2) it incorporates multiple wells in the model rather than using just one well.   

The reservoir model simulates one section of the reservoir (640 acres). A data input file 

for CMG’s IMEX simulator is created by the VBA code. Key reservoir parameters (porosity, 

permeability and NTG) are included as geostatistical maps and initial pressure is defined by a 

@RISK distribution function. The single-section multi-well reservoir model includes up to 8 

wells in the section. The wells are numbered consistent with the order in which they would be 

drilled if spacing was progressively reduced from 640-ac spacing to 320-ac, 160-ac, and then 80-

ac spacing. The reservoir model is formulated for the analysis of hydraulically fractured gas 

wells. 

B.4.2 Geostatistics Model 
The procedure developed in this research includes the use of geostatistical 

characterization to generate multiple possible representations of the primary reservoir 

parameters to populate the reservoir model. To evaluate the uncertainty in the reservoir model, 

1,000 maps of key reservoir parameters, including net-to-gross ratio (NTG), gas porosity ( gas) 

and gas permeability (kgas), were obtained. The wells with available log data that can be used 

for interpretation from the UGR’s integrated field study of the Berland River area were used as 

input to generate the maps.  

Basic reservoir parameters were upscaled.  As the simulation grid cells often are much 

larger than the sample density for well logs, well log data must be scaled up before they can be 

entered into the grid. Using the available upscaled logs at the wells location I first constructed 

variogram maps of the main properties to evaluate the direction of anisotropy and determine in 

which direction there is enough stable data to construct empirical variograms to be used for the 
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property modeling. The variogram map is obtained by calculating variograms in all possible 

azimuths and plotting them in a Cartesian plane. This gives the appearance of a contour map, 

where the contour maps are lines connecting points of equal variance. If the data have any 

anisotropy, it will be reflected in this variogram map in the form of elliptical contours. The 

direction of the elliptical closure will indicate the anisotropy direction. Once the anisotropy is 

identified, then the variograms are obtained. PETREL’s data analysis module was used to 

obtain the variogram maps and then the empirical variograms for the main properties in the 

major and minor directions of anisotropy. The major direction defines the direction in which the 

sample points have the strongest correlation (the main angle is specified as the clockwise angle 

from the north for the main search directions), the minimum direction is perpendicular to the 

major direction.  Fig. 17 is the variogram map for gas porosity; from this map we observed the 

major direction of anisotropy for gas porosity to be 68 degrees. Similarly, Fig. 18 and Fig. 19 

show the variogram maps for NTG and permeability. The major directions of anisotropy are 297 

degrees for NTG and 264 degrees for permeability. The empirical variograms were fitted by 

variogram models to obtain the theoretical variograms. Table 10 shows the type of variograms 

models used and the variogram parameters. Fig. 20 to Fig. 22 show the fitted variograms for 

each property in both the major and minor directions. 

Table 10 — Theoretical variogram parameters. 
 

Property Variogram 
 Model 

Angle of 
Major 

Direction  
Range Major 
Direction (m) 

Range Minor 
Direction (m) Sill Nugget 

Gas Porosity Exponential 68 3910 2015 1.054 0.034 
NTG Gaussian 247 2570 2470 0.952 0.116 
Permeability Spherical 264 2520 2430 0.997 0.050 
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Fig. 17 ― Variogram map for gas porosity. The white line shows the major direction of 
anisotropy. 
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Fig. 18 — Variogram map for net-to-gross ratio. The white line shows the major direction 
of anisotropy. 
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Fig. 19 ― Variogram map for permeability. The white line shows the major direction of 
anisotropy. 
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Fig. 20 — An exponential variogram model for gas porosity. a) is the variogram in the 
major direction of anisotropy and b) is the variogram in the minor direction.  
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Fig. 21 ― A Gaussian variogram model for NTG. a) is the variogram in the major 
direction of anisotropy and b) is the variogram in the minor direction. 
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Fig. 22 — A spherical variogram model for permeability. a) is the variogram in the major 

direction of anisotropy and b) is the variogram in the minor direction.  
 

We used a Sequential Gaussian Simulation (SGS) algorithm from PETREL’s 

petrophysical modeling process which is a stochastic method of interpolation based on kriging, 

which honors the well data, input distributions, variograms and trends, to generate the 1,000 

property maps. Upscaled logs, variograms and input distributions were used during the 

petrophysical modeling. All cells in the simulation grid were given values. The upscaled 

parameters are fixed at the wellbore of existing wells and are honored by the algorithm; the 
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model then was populated with the three pertinent parameters away from wellbores. Ordinary 

kriging was used as part of the SGS process to generate 1,000 reservoir properties maps. Facies 

were defined, one to represent sands and one to represent the flood plain deposits. Logs of these 

facies were generated for the available wells and the facies modeling was done in conjunction 

with property modeling. Fig. 23 shows an example of a facies log for one of the wells in the area.  

For permeability, a co-kriging option was used to steer the simulation using the spatial 

distribution of a second variable together with a correlation coefficient to calculate the 

contribution of the secondary variable at each point. The pore volume normalized by the 

arithmetic mean was used as the secondary variable and a correlation coefficient of 0.68 

determined by PETREL was used. The correlation coefficient was estimated based on the 

upscaled log values and it is given for the normal score transformed data of both primary and 

secondary variables. The correlation coefficient is obtained from a cross-plot of the two variables 

in the normal score space and basically summarizes the relationship between the two variables.  

Fig. 24 to Fig. 26 show one of the individual realizations of the porosity, net-to-gross 

ratio and permeability maps of the Gething D formation for the entire Berland River Area 

obtained through the geostatistical procedure described above. Gas porosity ranges from 0 to 0.1, 

net-to-gross ratio ranges from 0 to 1, and gas permeability ranges from 0.001 to 2.3 md. These 

property maps show the heterogeneous nature of the reservoir. The gray area on these figures 

represents the section from where the 1,000 property maps were obtained for the multi-well 

reservoir model for this project. 

An example of one realization of reservoir properties map for the selected section of the 

Berland River Area is presented in Fig. 27. Fig. 28 also shows one realization of the property 

NTG on a 3-D display of the simulation grid. Note the high degree of heterogeneity seen through 
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the model both laterally and vertically in the study area. The high degree of heterogeneity both 

vertically and laterally displayed on Figs. 21and 22 highlights the need for using a multi-well 

model to simulate the tight gas reservoir.  

After the reservoir simulation using the 1,000 realizations of properties maps was 

initiated, some issues were found with the maps that needed correction before the simulation 

could be continued. The most significant was related to adjustment required to the NTG value for 

certain cells that need to change its value from 0% to 0.5% to avoid undesired stops in the 

simulation. 
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Fig. 23 ― An example of a log including facies for a well of the area under study. The facies 
log is presented on Track 4. Sand facies are represented by the dark yellow color and flood 

plain deposits by the brown color. Depths are in meters. 
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Fig. 24 — A realization of porosity for the Gething D formation obtained through 
geostatistical procedures. The boxes in light purple represent UGR’s lease areas. The 

shadowed gray box represents the section selected to extract the property maps to be used 
in the multi-well reservoir model for this project. 

 
 
 
 

 
 

Fig. 25 ― A realization of net-to-gross for the Gething D formation obtained through 
geostatistical procedures. The boxes in light purple represent UGR’s lease areas. The 

shadowed gray box represents the section selected to extract the property maps to be used 
in the multi-well reservoir model for this project 

 

 

NTG 
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Fig. 26 — A realization of permeability for the Gething D formation obtained through 
geostatistical procedures. The boxes in light purple represent UGR’s lease areas. The 

shadowed gray box represents the section selected to extract the property maps to be used 
in the multi-well reservoir model for this project. 

 
 

 
 

Fig. 27 ― An example realization of reservoir property maps for the section of the Gething 
D interval, Berland River Area, showing the properties in individual layers.  

Permeability is in md.  

 

k (md) 
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Fig. 28 — Simulation grid of the study area showing a top (a) and bottom (b) view of the 
three-dimensional cube of net-to-gross ratio (NTG). 

 
 
 

B.4.3 Comparison with Single Well Model 
The new reservoir model yielded a distribution of production that matches the actual 

distribution of Gething production and the single-well reservoir model production results quite 

well (Fig. 29a).  Since around 10% of the maps had problems with wells in zones of very low 
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pay, the lowest 10% of production values were removed from the Stage-1 production results for 

640- and 320-acre spacing for Wells 1 & 2 and the cumulative distribution functions (CDF) was 

constructed again (Fig. 29b). A better comparison between actual data, single-well model results 

and multi-well model results is obtained in this case. 

Similarly, comparison was done for best-month production on individual wells (Wells 1 

& 2). The multi-well model produced a distribution that matches much better the actual 

production results from the Berland River area than the single-well model (Fig. 30a). Similarly, 

10% of the lowest production values were removed and the cumulative distribution plot was 

constructed again and a better comparison between the multi-well reservoir results and the actual 

production data is observed (Fig. 30b). 



56 

 

Fig. 29 — a) The multi-well reservoir model yielded a distribution of production that 
matches the actual distribution of Gething production and single-well reservoir model 

results quite well, b) revised production distribution for multi-well reservoir model where 
the lowest 10% of production values was removed from Stage-1 results. A better match 

with the actual distribution of Gething production and single-well reservoir model is 
observed.  
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Fig. 30 ― a) The multi-well reservoir model yielded a distribution of best-month gas 
production that matches the actual distribution of Gething production. b) Lowest 10% of 
production values removed from Stage 1. A better match with the actual distribution of 

Gething production is observed. 
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B.4.4 Results 
The same illustrative economic assumptions used in the single-well reservoir simulation 

model were used here: 

 

Gas Price: $5.50 per Mcf 

Marginal Cost: $1.00 per Mcf 

Fixed Cost: $50,000 per year per well 

Drilling Cost: $1.5 MM per well 

Discount Rate: 10% 

No royalty 

 
In Table 11 to Table 13  the initial spacing and the recommended downspacing for Stage 

2 are determined. The results for Stage-1 length of 1 year (Table 11) shows that if we start with a 

640-acre spacing and the initial production is high (P90), the downspace alternative that 

maximizes the NPV is to continue on 640-acre spacing; in this case no additional wells will be 

drilled in Stage 2. The total NPV of this scenario, including Stage 1, is $15.88 MM. If we 

observe low production (P10), the optimal Stage-2 decision is to downspace to 160 acres, in 

which case the NPV is $2.21 MM. We also downspace to 160 acres if P50 production is 

observed; for this case the NPV is $4.45 MM. Weighting each of these production scenarios with 

their probability of occurrence, we obtain an expected NPV for an initial 640-acre spacing of 

$6.67 MM. Similar analyses were done for initial spacing of 320, 160 and 80 acres and their 

estimated NPVs are $6.04 MM, $7.10 MM and $6.25 MM, respectively. Thus, the optimal 

Stage-1 spacing is 160 acres, in which no further downspacing is required. This example 

demonstrates the value when a dynamic strategy is used. A dynamic strategy takes advantage of 

the information gained during the initial stage to develop the optimal downspacing program. 
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Table 12 and Table 13 present the results for 3-year and 5-year Stage-1 lengths, 

respectively. The best initial spacing for the 3-year Stage-1 length is 160 acres and its estimated 

NPV is $6.63 MM. For 5-year Stage-1 length, the optimum is to start with 640-acre spacing and 

not downspace, in which case the expected NPV is $6.39MM. We observe from these results that 

extending the duration of Stage 1 beyond 1 year does not represent an economic benefit, which is 

consistent with and results from the decreasing correlation coefficients between Stage 2 and 

Stage 1 performance with increased Stage 1 duration previously discussed. The optimal 

development policy is a 1-year Stage 1 of 160 acres followed by no downspacing. These results 

are specific to the reservoir model and economic assumptions used in this work and cannot be 

generalized. 

Table 11 — Optimal development strategy results for Stage-1 length of 1 year. Monetary 
values are per section. 

 
Stage 1 

 
Stage 2 

 
Stage 1 Stage 2 Total Estimated 

NPV, Optimal 
Policy, $MM 

Spacing, 
acres Probability Observed 

DCP  

Optimal 
Spacing 
acres 

 

E[NPV], 
$MM 

NPV, 
$MM 

NPV, 
$MM 

640 0.25 P90 
 

640 
 

0.94 14.64 15.58 
 

6.67 
 

 
0.50 P50 

 
160 

 
0.94 3.51 4.45 

   

 
0.25 P10 

 
160 

 
0.94 1.27 2.21 

   

           
 

320 0.25 P90 
 

320 
 

0.39 10.31 10.70 
 

6.04 
 

 
0.50 P50 

 
320 

 
0.39 4.97 5.36 

   

 
0.25 P10 

 
320 

 
0.39 2.37 2.76 

   

            
160 0.25 P90 

 
160 

 
0.43 10.55 10.98 

 
7.10  

 
0.50 P50 

 
160 

 
0.43 6.24 6.67 

   

 
0.25 P10 

 
160 

 
0.43 3.66 4.09 

   

            80 0.25 P90 
 

80 
 

0.68 7.89 8.57 
 

6.25 
 

 
0.50 P50 

 
80 

 
0.68 5.38 6.06 

   

 
0.25 P10 

 
80 

 
0.68 3.63 4.31 

    
 

 



60 

Table 12 — Optimal development strategy results for Stage-1 length of 3 years. Monetary 
values are per section. 

 
Stage 1 

 
Stage 2 

 
Stage 1 Stage 2 Total Estimated NPV, 

Optimal Policy, 
$MM 

Spacing, 
acres Probability Observed 

DCP  

Optimal 
Spacing, 
acres 

 

E[NPV], 
$MM 

NPV, 
$MM 

NPV, 
$MM 

640 0.25 P90 
 

640 
 

3.19 8.74 11.94 
 

6.46 
 

 
0.50 P50 

 
640 

 
3.19 1.98 5.17 

   

 
0.25 P10 

 
320 

 
3.19 0.38 3.57 

   

           
 

320 0.25 P90 
 

320 
 

2.75 5.62 8.37 
 

5.85 
 

 
0.50 P50 

 
320 

 
2.75 2.75 5.50 

   

 
0.25 P10 

 
320 

 
2.75 1.28 4.03 

   

            
160 0.25 P90 

 
160 

 
3.79 4.47 8.26 

 
6.63  

 
0.50 P50 

 
160 

 
3.79 2.68 6.47 

   

 
0.25 P10 

 
160 

 
3.79 1.54 5.33 

   

            
80 0.25 P90 

 
80 

 
4.28 1.56 5.85 

 
5.24 

 

 
0.50 P50 

 
80 

 
4.28 0.92 5.20 

   

 
0.25 P10 

 
80 

 
4.28 0.44 4.72 
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Table 13 ― Optimal development strategy results for Stage-1 length of 5 year. Monetary 
values are per section. 

 
Stage 1 

 
Stage 2 

 
Stage 1 Stage 2 Total Estimated 

NPV, 
Optimal 
Policy, $MM 

Spacing 
acres Probability Observed 

DCP  

Optimal 
Spacing, 
acres 

 

E[NPV], $MM NPV, $MM NPV, 
$MM 

640 0.25 P90 
 

640 
 

4.42 5.27 9.69 
 

6.39 
 

 
0.50 P50 

 
640 

 
4.42 1.21 5.63 

   

 
0.25 P10 

 
640 

 
4.42 0.17 4.59 

   

           
 

320 0.25 P90 
 

320 
 

4.00 3.05 7.06 
 

5.67 
 

 
0.50 P50 

 
320 

 
4.00 1.50 5.50 

   

 
0.25 P10 

 
320 

 
4.00 0.65 4.65 

   

            
160 0.25 P90 

 
160 

 
5.20 1.85 7.04 

 
6.28  

 
0.50 P50 

 
160 

 
5.20 1.02 6.22 

   

 
0.25 P10 

 
160 

 
5.20 0.45 5.65 

   

            
80 0.25 P90 

 
80 

 
5.18 (0.43) 4.75 

 
4.53 

 

 
0.50 P50 

 
80 

 
5.18 (0.66) 4.52 

   

 
0.25 P10 

 
80 

 
5.18 (0.85) 4.33 

    

B.5 Conclusions 
• Two integrated reservoir models (single-well and multi-well simulation based) 

and decision models were built to quantify the uncertainty and identify optimal 

well spacing in Deep Basin (Gething) tight sands. 

• The optimal well spacing for a $5.5/Mscf gas price for both models is 160 acres 

without any downspacing recommended. This result is specific to the reservoir 

properties and economic assumptions used in this illustrative example and 

cannot be generalized. 

• The multi-well reservoir model generated a better match with historical 

production data; however,  it is more difficult and time consuming to apply. 

• The methods and tools developed in this part of the project can be applied, with 

some modification, to other unconventional plays. 
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C CASE STUDY 2: NORTHERN BARNETT SHALE PLAY 
C.1 Introduction 

Discovered in 1980, the Barnett shale play located in the Fort Worth basin was one of the 

first successful shale gas plays developed using horizontal wells and slick-water fracturing 

techniques. Our study area is in the northern part of the Barnett shale play, and consists of those 

parts of Montague, Cooke and Wise counties that are southwest of the Muenster Arch and have 

latitudes greater than 33.4° (yellow area in Fig. 31). The northern Barnett play is located inside 

the oil window (vitrinite reflectance, Ro, < 1.2). The average producing GOR of the northern 

Barnett shale play is 10 Mscf/STB through the end of 2010 (Fig. 32).  

The initial oil production rate of existing producing wells ranges from less than 1 STB/D 

to 1500 STB/D. This large uncertainty in shale well performance makes it difficult for operators 

to identify the optimal development strategy in the early stages of development. Our well 

database included 64 horizontal wells in the study area, selected based on the following criteria: 

• Inside the northern Barnett shale study area, 

• Horizontal well with known completion data and well spacing, 

• Produced for at least six months with an established decline, and 

• The least-squares fitted decline curve is a reasonable representation of the 

production profile. 
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Fig. 31 – Barnett shale thermal maturity map. Northern Barnett shale study area (yellow) 
is located in the oil window. (Modified from Montgomery et al., 2005) 
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Fig. 32 – Overview of monthly production history and drilling activity in the northern 
Barnett study area shows continuous increase of oil and gas production and drilling 

activity through the end of 2010.  
 

C.2 Decline Curve Based Reservoir Model 

C.2.1 Decline Curve Parameters 
The monthly oil and gas production of 64 horizontal wells in the study area were 

extracted from a public database. Since the study area is inside the oil window and oil is more 

economic than natural gas under current conditions, the monthly oil production and monthly 

equivalent oil production (6 Mscf = 1 STB) were fitted with Arps’ decline curves. Because the R2 

values of the oil production decline curve parameters were greater than the R2 values of 

equivalent oil production decline curve parameters when correlated with decision/reservoir 

parameters (Table 14), monthly oil production is used as the primary production phase in the 

rest of the paper and monthly gas production is calculated by multiplying monthly oil 

production by GOR. Some of the 64 wells have been restimulated; however, decline curve 

analysis assumes the operating condition of the producing well remains the same. Thus, for 

restimulated wells we truncated the production data at the time of restimulation in the decline 
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curve analysis. The production data were fitted with hyperbolic decline curves using least-

squares regression of the logarithm of production versus time. Influential outliers were ignored 

(Fig. 33). The decline exponent b was constrained between 0 and 2, while the initial decline rate 

was constrained to between 0 and 50 1/year. 

 
Table 14 – R2 Between Decline Curve Parameters and Decision/Reservoir Parameters 

 
Note: Black numbers indicate positive relationship, red numbers indicate negative 

relationship, and yellow highlighted numbers were selected for use in the linear regression 
models. 

 

 
Fig. 33 – Decline curve fit historical production from 2nd month (peak oil in first year) to 

43rd month (end of historical production).  
 
 

Fluid Pro p Sta g e s Inte rva l W S1 W S2 W SA Ro T hick De p th Fluid _Inte rva l Pro p _Inte rva l

Oil_q i 0.01 0.08 0.02 0.15 0.03 0.08 0.06 0.00 0.17 0.05 0.07 0.04

Oil_ln(q i) 0.04 0.20 0.05 0.29 0.11 0.17 0.19 0.03 0.06 0.01 0.13 0.14

Oil_D i 0.00 0.03 0.03 0.03 0.07 0.08 0.05 0.07 0.00 0.01 0.14 0.03

Oil_b 0.02 0.02 0.00 0.01 0.03 0.00 0.00 0.03 0.00 0.02 0.02 0.01

Oil_CP6to 1 0.01 0.21 0.06 0.18 0.20 0.13 0.13 0.00 0.01 0.00 0.19 0.18

Eq _q i 0.05 0.11 0.03 0.21 0.05 0.13 0.10 0.01 0.13 0.07 0.06 0.07

Eq _ln(q i) 0.11 0.25 0.08 0.36 0.13 0.22 0.23 0.00 0.03 0.02 0.11 0.18

Eq _Di 0.03 0.01 0.00 0.02 0.04 0.01 0.00 0.00 0.07 0.15 0.01 0.00

Eq _b 0.02 0.04 0.00 0.03 0.00 0.01 0.01 0.02 0.14 0.08 0.00 0.02

Eq _CP6to 1 0.01 0.03 0.02 0.02 0.10 0.04 0.02 0.00 0.00 0.02 0.06 0.03
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C.2.2 Decision Parameters 
Most shale gas wells currently are drilled horizontally and stimulated with multiple 

fractures. The decisions to be made with regard to drilling, completion and stimulation of these 

wells include length of perforated interval, horizontal well spacing, fracturing fluid volume, 

proppant volume, number of stages, and others. We call these parameters “decision 

parameters.” Reservoir properties that affect production performance but cannot be controlled 

by the operator, such as formation thickness, formation depth, thermal maturity and others, are 

termed “reservoir parameters.” 

Many decision parameters, such as perforated interval, amount of fracturing proppant, 

and volume of fracturing fluid, can be extracted from public databases for existing wells. 

However, reservoir parameters are not typically available because data such as core and log 

data are not available from public data sets. Some reservoir parameters used in this study, such 

as formation thickness, were estimated from reservoir property maps presented in the 

literature, e.g., Montgomery et al. (2005). We digitized the reservoir property maps and 

interpolated reservoir parameters at each well location. 

A well parameter that has significant impact on production performance is well spacing. 

In trying to quantify this impact, we considered three of well spacing parameters: the shorter 

well spacing, the longer well spacing, and average well spacing. The shorter well spacing (WS1) 

is the smaller of the two spacings between the well and the two neighbor wells on either side, 

the longer well spacing (WS2) is the greater of the two spacings, while the average well spacing 

(WSA) is the average of WS1 and WS2 (Fig. 34). For well spacings greater than 2000 ft, 2000 ft 

was assigned as the well spacing because we believe well spacing greater than 2000 ft will not 

make any difference on production.  
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Fig. 34 – Definition and example of shorter well spacing (WS1), longer well spacing (WS2), 

and average well spacing (WSA) 

C.2.3 Linear Regression Models 
The conventional decline curve parameters initial production rate (qi), initial decline rate 

(Di), and decline exponent b were used as the dependent variables for linear regression initially. 

However, the R2 values between qi and Di and the decision/reservoir parameters were low. Since 

the initial rate qi has a wide range and the linear regression model was dominated by the high-

initial-rate wells, we substituted qi with ln(qi) to obtain a better correlation with the decision 

parameters. The ratio of cumulative production at 6 months to 1 month (CP6to1) was 

introduced as a proxy for Di, the instantaneous decline rate at time zero (Eq. 5). Because Di can 

range widely and have extremely high values, it is not a good parameter for linear regression. 

Because CP6to1 is related to instantaneous decline rate but is averaged over a longer time 

period, the R2 between CP6to1 and decision parameters is higher than the R2 between Di and 

decision parameters.     
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𝐶𝑃6𝑡𝑜1 =
�1 − �1 + 6 𝐷𝑖12𝑏�

1−1𝑏�

�1 − �1 + 𝐷𝑖
12𝑏�

1−1𝑏�

… … … … … … … … … … … … … … … … … … … … … … … … … . . (5) 

Linear regression was used to correlate decision and reservoir parameters with decline 

curve parameters. Decline curve parameters ln(qi), CP6to1 and b were modeled as linear 

functions of decision and reservoir parameters with errors (Eqs. 6, 7, and 8). The errors between 

the linear regression models and the least-squares fitted decline curve parameters are assumed 

to have a joint multi-normal distribution (Eq. 9).  

 

ln(𝑞𝑖) = 3.782191508 + 0.000346087 × 𝑃𝑒𝑟𝑓𝑜𝑟𝑎𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎… … … … … … … … … … . … … … (6) 

𝐶𝑃6𝑡𝑜1 = �
−0.75656431 + 0.001495744 × 2000 + 0.022245455 ×

𝐹𝑙𝑢𝑖𝑑
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

+  𝜀𝐶𝑃6𝑡𝑜1(𝑊𝑆1 ≥ 2000)

1.08676577 + 0.001495744 × 𝑊𝑆1 + 0.022245455 ×
𝐹𝑙𝑢𝑖𝑑

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
+ 𝜀𝐶𝑃6𝑡𝑜1(𝑊𝑆1 < 2000)

… (7) 

𝑏 = 0.9715 + 𝜀𝑏 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . (8) 

�
𝜀ln(𝑞𝑖)
𝜀𝐶𝑃6𝑡𝑜1
𝜀𝑏

�~𝑁��
0
0
0
� ,�

0.74618
−0.27053
−0.08429

 −0.27053
0.5073

0.13709

 −0.08429
0.13709
0.31539

��… … … … … … … … … … … … … … . … . . (9) 

 

Table 14 shows the R2 values of each pair of the decision/reservoir parameters with 

decline curve parameters resulting from fits of either oil production data or equivalent oil (oil 

plus gas) production data. The linear relationships between decline curve parameters and 

decision/reservoir parameters selected for use in the linear regression models are highlighted in 

yellow. The crossplots between decline curve parameters and decision/reservoir parameters in 

Eqs. 2, 3, 4, and 5 are shown in Fig. 35, Fig. 36, and Fig. 37. Statistics like R2, p-value, F-value, 

and t-value for every parameter included in the linear models (Eqs. 2, 3, and 4) can be found in 

the SAS output tables in Appendix A.  

In the regression model the parameter ln(qi) is related only to the length of perforated 

interval, with a R2 = 0.2887 (Fig. 35). CP6to1 is related to the shorter well spacing and fluid 

volume per perforated interval. Based on the linear regression model, when the shorter well 
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spacing and the volume per perforated interval are greater, the CP6to1 will be greater; i.e., the 

average decline rate over the first 6 months will be smaller (Fig. 36 and Fig. 37). 

In Table 14, all of the R2 values are relatively low. We typically hope to see R2 values for 

physical and engineering relationships that exceed 0.8. There are several reasons for the 

relatively low R2 values for this linear regression model. First, the relationships between decline 

curve parameters and decision parameters are not as straightforward as many physical and 

engineering relationships. Second, the uncertainty of horizontal drilling in shale plays is large, 

to which any operator will attest. When the dependent parameters (decline curve parameters) 

are functions of multiple factors (decision/reservoir parameters and more), the R2 for each 

parameter with the dependent parameters will be low. Although the R2 values are relatively 

low, another statistical measure, the p-value, shows the linear model is statistically significant. 

The p-value represents the probability that the corresponding independent variable 

(decision/reservoir parameters) and dependent variables (decline curve parameters) are not 

linearly related. According to the statistical output tables in Appendix A, every 

decision/reservoir parameter included in the proposed model has a p-value less than 5%, which 

means there is a 95% chance that the linear relationship between each decision/reservoir 

parameter and selected decline curve parameter holds. 
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Fig. 35 – Initial production rate is positively related to length of perforated interval with R2 

= 0.2881. 
 

 
Fig. 36 – CP6to1 is positively related to shorter well spacing (WS1); average CP6to1 is 3.22 

when shorter well spacing is greater than 2000 ft.  
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Fig. 37 – CP6to1 is positively related to fluid per perforated interval with R2 = 0.1895. 

 

C.2.4 GOR Model 
Since we elected to build the regression model in terms of oil production, we needed to 

be able to determine gas production from oil production. We first built a GOR type curve based 

on the average monthly GOR of the 64 horizontal wells (Fig. 38). The average monthly GOR of 

the 64 horizontal wells shown in Fig. 38 is the summation of gas production of the 64 wells 

divided by the summation of oil production of the 64 wells for each month. We assume the 

GOR curve of any well in the study area has the same shape as the type curve but with a 

different initial GOR. Second, we correlated the initial oil percentage (Eq. 10) with thermal 

maturity digitized from the thermal maturity map in Fig. 39 (correlation shown in Fig. 9). The 

error between the modeled initial oil percentage and actual initial oil percentage is assumed to 

be normally distributed and has a standard deviation = 0.2 (Eq. 11).   

 

𝑂𝑖𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = (𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑆𝑇𝐵) +  𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛/6(𝑀𝑠𝑐𝑓) ) … … … … … … . … (10) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑖𝑙 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  −1.0129 ∗ 𝑅0 + 1.65 + 𝜀𝑜, where 𝜀𝑜~ N(0, 0.201064) … … … … (11) 
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Monte Carlo simulation is used to generate oil and gas production forecasts in the 

decision model. For each realization, the decline curve parameters for oil production are based 

on Eqs. 2 through 5. The oil production forecasts are then generated using the decline-curve 

parameters and a 5% minimum decline rate. To obtain gas production forecasts, an error was 

first randomly generated from the normal distribution in Eq. 11 to obtain the initial oil 

percentage. The initial GOR was then calculated from the initial oil percentage (Eq. 10). The 

type curve in Fig. 38 is shifted vertically to match the initial GOR, and the shifted GOR is then 

combined with the oil production forecast to generate the gas production forecast (Fig. 40). The 

oil and gas production forecasts generated using Monte Carlo simulation become inputs to the 

decision model for identifying optimal development strategies.  

 

 
Fig. 38 – GOR type curve fitted to average GOR of 64 wells 
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Fig. 39 – Initial oil percentage is negatively related to vitrinite reflectance (Ro). 

 

 
Fig. 40 – Gas production forecast generated by multiplying oil production forecast and 

GOR curve. 
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C.2.5 Monte Carlo Simulation of Decline Curve Model 
In this section, we use the decline curve model developed above, including the 

associated uncertainty, to perform a Monte Carlo simulation to determine the relative influence 

of decline-curve parameters on uncertainty in production. We consider a single well with 

average decision parameters determined from the study area: perforated interval of 3500 ft, 600-

ft spacing, and 125,000 of stimulation fluid pumped. We do not vary any of the decision 

variables in this particular analysis, so we thus consider only uncertainty in the decline curve 

model.  

Based on the regression analysis described above, we established P10, P50, P90 values 

for the decline curve parameters ln(qi), CP6to1, b, and the initial oil percentage (Table 15). We 

also imposed a minimum decline rate for long-term production forecasts. Minimum decline rate 

was not derived from the regression analysis above because no wells had produced long 

enough to establish this value. P10, P50 and P90 values for minimum decline rate are also 

shown in Table 15.  

 
Table 15 – Reservoir Model Input Uncertainty   

 
 

We can better understand the relative importance of each uncertainty by computing the 

cumulative oil and gas production at 25 years for the set of values for each parameter in Table 2. 

We plot these results in the “tornado” diagrams show in Fig. 41. In this case, we have run each 

input through its uncertainty range while holding all other variables at their P50, or base case. 

Taking each variable one at a time, we see that cumulative oil production could range from 

around 20,000 STB to 120,000 STB. Gas production is also highly uncertain, with a range of 

between 0.1 to 1.0 Bscf, or an order of magnitude. Uncertainty in 25-year cumulative production 

of both oil and gas is driven primarily by uncertainty in initial rate and initial decline rate, and 

to a lesser extent by the decline exponent.  

 

Variable P10 P50 P90
Log Initial Oil  Production 3.89 4.99 6.10
Ratio 6 mo Q to 1 mo Q 1.87 2.78 3.69
Hyperbolic Exponent 0.25 0.97 1.69
Minimum Decline Rate 2% 5% 8%
Initial Oil  Percentage 53% 64% 75%
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Fig. 41 – Tornado diagrams for cumulative oil and gas production at 25 years. 
 

The analysis summarized in Fig. 41 assumes that each input varies one at a time. We 

next allowed the inputs to vary simultaneously, and included the correlations described in 

Equation 5. The distribution of production profiles generated from the decline curve regression 

model are superimposed on actual oil and gas production profiles for all study area wells in 

Fig. 42. The good match indicates the decline curve regression model is reasonable and 

represents the uncertainty in production in the study area. The P10, P50 and P90 values, along 

with the mean, from the calculated results are presented in Table 16. The uncertainty ranges are 

wider than what was observed in Fig. 41, since we are varying all of the inputs simultaneously. 

Again, we see that production uncertainty is large; the range spans more than an order of 

magnitude. 

 
 

Cumulative Oil

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
Base Value

Base Value = 40,011

Log Initial Oil Production 3.89 6.10 4.99

Ratio 6 mo Q to 1 mo Q 1.87 3.69 2.78

Hyperbolic Exponent 0.25 1.69 0.97

Minimum Decline Rate 8% 2% 5%

Cumulative Gas

0.00 0.20 0.40 0.60 0.80 1.00 1.20
Base Value

Base Value = 0.32

Ratio 6 mo Q to 1 mo Q 1.87 3.69 2.78

Log Initial Oil Production 3.89 6.10 4.99

Hyperbolic Exponent 0.25 1.69 0.97

Initial Oil Percentage 0.75 0.53 0.64

Minimum Decline Rate 8% 2% 5%
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Fig. 42 – Decline curve regression model fits actual study-area oil and gas production 

profiles well. 
 

 
Table 16 – Cumulative Oil and Gas Uncertainty Range   

 
 

C.3 Decision Analysis 
In this section we show the results of Monte Carlo simulation that relate production 

performance to well development decisions, in particular, perforated interval, well spacing, and 

stimulation fluid volume (Table 17, Table 18, and Table 19 respectively). To allow proper 

comparison of performance between wells of different lengths and well spacings, and thus 

different drainage areas, we normalize production to a unit area 3500 ft by 1000 ft in size. This 

normalization essentially assumes that the horizontal laterals are laid end to end. The unit-area 

production reported in Table 17 – Table 19 for wells with average study-area properties (3500-ft 

perforated interval and 600-ft well spacing) are 1.67 times the production of a single well.  

The impact of perforated interval on production performance is shown in Table 17. Well 

spacing and stimulation fluid volume are held constant at the study-area average values of 600 

ft and 125,000 bbls, respectively. We show P10, P50, P90 and mean from the distributions of oil 

and gas production. Again, the ranges in production are wide, indicating significant uncertainty 

in well production response. Normalized 25-year production of both oil and gas increase as the 

perforated interval decreases. This may appear counterintuitive, since initial production rate 

increases with perforated interval (Fig. 35). However, in Fig. 37, CP6to1 increases with fluid 

Output P10 P50 P90 Mean
Cumulative Oil  Production (STB) 10,691 37,190 135,116 61,062
Cumulative Gas Production (BCF) 0.05 0.28 1.25 0.53
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volume per foot of perforated interval. Since most of the sensitivity in Fig. 37 is in the 

perforated interval, this means that CP6to1 decreases with perforated interval. Thus, wells 

decline faster as the perforated interval increases. This is consistent with LaFollette and 

Holcomb’s (2011) findings that production per foot declines as the perforated interval increases.  

The impact of well spacing on production performance is shown in Table 18. Perforated 

interval and stimulation fluid volume are held constant at the study-area average values of 3500 

ft and 125,000 bbls, respectively. Normalized 25-year production of both oil and gas increase as 

the well spacing decreases. These is little difference in production between 1000-ft and 600-ft 

well spacing. However, normalized production increases significantly between 600-ft and 200-ft 

well spacing. Fig. 36 shows that CP6to1 decreases (i.e., decline rates increase) as well spacing 

decreases. However, this is apparently outweighed by the impact of having 3 times as many 

wells at 200-ft spacing than 600-ft spacing.  

The impact of stimulation fluid volume on production performance is shown in Table 

19. Perforated interval and well spacing are held constant at the study-area average values of 

3500 ft and 600 ft, respectively. Normalized production increases with fluid volume, as 

expected. Production increases 30-35% as fluid volume is increased 50% from 100,000 to 125,000 

bbls.  

These results demonstrate that combining reservoir modeling with decision modeling 

can be helpful in relating production performance to decision parameters in the field and 

should aid in optimization of spacing, completion and stimulation decisions in this area. While 

instructive, these results cannot be used directly to make decisions. Economics can and should 

be incorporated into the integrated reservoir/decision model. It is possible that the greater costs 

per unit area associated with having shorter laterals and shorter spacing could outweigh the 

benefits in production shown in Table 17 and Table 18.  
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Table 17 – Impact of perforated interval on oil and gas production at 25 years 
 

 
 

Table 18 – Impact of well spacing on oil and gas production at 25 years 
 

 
 

Table 19 – Impact of stimulation fluid volume on oil and gas production at 25 years 
 

 
 

 

C.4 Updated Model Using a Larger Data Set 

C.4.1 Introduction 
In this larger data set, we obtained 266 wells with 85 wells having well spacing 

information (compared with 64 total wells with 42 wells having well spacing data in the first 

data set) in the same area with the same selection criteria as the first data set (C.1). Unlike the 

first data set where average lease production was used, allocated production was available for 

individual wells in the second data set. Monthly well production data until January 2011 was 

analyzed using decline curve analysis.  

C.4.2 Decline Curve Based Reservoir Model 
Deterministic decline curve fits were applied to the monthly oil production of the 266 

wells. Decline-curve parameters ln(qi), CP6to1, and b were calculated based on the deterministic 

fits and then correlated with decision and completion parameters using linear regression. 

According to Fig. 43, ln(qi) is positively related to perforated interval for the 266 wells. 

We observed the same relationship in the first data set, but with a different intercept and slope.  

Perf Int
(ft) mean P10 P50 P90 mean P10 P50 P90

4500 59,618         9,911           36,699         132,140      0.50 0.05 0.27 1.15
3500 61,062         10,691         37,190         135,116      0.53 0.05 0.28 1.25
2500 78,663         14,465         50,922         171,483      0.70 0.07 0.40 1.60

Cumulative Oil (STB) Cumulative Gas (BCF)

Well Space
(ft) mean P10 P50 P90 mean P10 P50 P90

1000 61,071         11,058         39,697         134,118      0.55 0.06 0.33 1.30
600 60,489         10,892         37,727         132,803      0.52 0.05 0.29 1.19
200 118,391      18,453         70,116         269,229      1.00 0.08 0.50 2.38

Cumulative Oil (STB) Cumulative Gas (BCF)

Fluid
(bbls) mean P10 P50 P90 mean P10 P50 P90

150,000 70,929         12,396         43,074         154,016      0.78 0.08 0.43 1.74
125,000 61,851         11,239         37,779         132,022      0.67 0.06 0.34 1.53
100,000 53,677         9,352           33,205         118,135      0.58 0.06 0.30 1.39

Cumulative Gas (BCF)Cumulative Oil (STB)
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Fig. 43 – Ln(qi) is positively related to perforated interval (2nd data set) 
 

CP6to1 was plotted against perforated interval for the 85 wells with well spacing 

information (Fig. 44). Seven outliers with perforated interval less than 1500 ft were observed. 

They are not on the same trend in the plot as other data points, for reasons unknown. Since 

most operators are not targeting less than 1500-ft laterals in the northern Barnett shale reservoir, 

we decided to exclude the outliers in our analysis. After excluding the outliers, we observed a 

negative relationship between CP6to1 and perforated interval (Fig. 45). The first model 

exhibited a positive relationship between CP6to1 and fracturing fluid per perforated interval, 

where most of the correlation was in with perforated interval and less was with fracturing fluid 

volume. Thus, the second model is in agreement with the first model in that CP6to1 is 

negatively related to perforated interval. 

The residual between CP6to1 and the linear regression model in Fig. 45 was calculated 

and named as CP6to1_ex. CP6to1_ex was then plotted against tighter well spacing (Fig. 46). 

There was no straight line relationship between CP6to1_ex and tighter well spacing; thus, we 
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averaged CP6to1_ex and CP6to1 by groups (Table 20). The average curve of CP6to1_ex shows 

that CP6to1_ex increases from 0 ft to 350 ft, decreases from 350 ft to 450 ft, and then levels up 

after well spacing exceeds 450 ft. A least-squares fit was then obtained using 340 ft as the peak 

and 450 ft as the leveling point (Fig. 46). 

The decline exponent b was found to not be related to any decision/reservoir 

parameters, as with the first data set, but with different mean and standard deviation. 

The regression models for ln(qi), CP6to1, b and the covariance matrix between the 

residuals are shown in Eq. (12). The R2 between ln(qi) and perforated interval is 21%, the R2 

between CP6to1 and both perforated interval and tighter well spacing is 20% 

 
 

Fig. 44 – CP6to1 vs. perforated interval. Seven outliers for wells with less than 1500-ft PI are observed. 
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Fig. 45 – CP6to1 is negatively correlated to perforated interval, excluding 7 outliers. 

 

 
Fig. 46 – CP6to1_ex peaks around 340 tighter well spacing  
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Table 20 – CP6to1 and CP6to1_ex average used for Fig. 47 

 

........(12) 

 

According to Fig. 47, there are significant differences between the two data sets in the 

relationship between CP6to1 and tighter well spacing. First, the wells are different. The second 

data set has 85 wells with well spacing information while the first data set has 42 with well 

spacing information, and not all the 42 wells in the first data set are included in the second data 

set. Second, the production data are from two different public data bases: the first data set is 

from HPDI and the second data set is from IHS. Third, IHS provided allocated individual-well 

production, while there is production from 8 multi-well leases in the first data from HPDI. The 

differences in the two data sets have resulted in the difference between the two regression 

models for CP6to1 vs. tighter well spacing. (Fig. 36 and Fig. 46, Eq.(7) and Eq.(12)).  

Well spacing <40 175-195 282-345 358-384 440-484 493-540 547-735 >760
Count 2 4 9 6 23 20 11 10

CP6to1_Ex -0.5 -0.053 0.467 0.21 0.021 -0.144 -0.09 -0.06
CP6to1 2.05 2.5 3.19 2.69 2.53 2.34 2.75 2.53
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Fig. 47 – Comparison between first and second data sets in CP6to1 vs. tighter well spacing 

 

C.4.3 GOR Model 
The average monthly GOR of the 243 horizontal wells equals the summation of the gas 

production of all wells divided by the summation of oil production of all wells in the 

corresponding month. A GOR type curve was fit to the average monthly GOR in Fig. 48. We 

assume the GOR curve for each of the 243 horizontal wells will have the same shape as the type 

curve but with a different initial GOR.  A correlation between oil percentage of peak three 

months’ production and thermal maturity was constructed (Fig. 49) for modeling the initial 

GOR of each well.  

 
𝑂𝑖𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = (𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑆𝑇𝐵) +  𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛/6(𝑀𝑠𝑐𝑓) ) … … … … … … … … … … . … (13) 
𝑃𝑒𝑎𝑘 𝑡ℎ𝑟𝑒𝑒 𝑚𝑜𝑛𝑡ℎ𝑠 𝑜𝑖𝑙 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  −0.6033 ∗ 𝑅0 + 1.0753 + 𝜀𝑜 … … … … … … … … … … … … … … (14) 

Where 𝜀𝑜~𝑁(0, 𝑆𝐷 = 0.188579) 
 

For each realization of Monte Carlo simulation, a random number from the normal 

distribution of 𝜀𝑜  was substituted in Eq. 14 to calculate peak three-months oil percentage, then 

the GOR of the first three months was calculated based on peak three-months oil percentage 

(Eq. 13). The type curve in Fig. 49 will then shift vertically to match the GOR of the first three 

months. The shifted GOR can then be combined with the oil production forecast to generate a 
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gas production forecast (Fig. 50). The oil production and gas production forecasts will be used 

to calculate net present value in Monte Carlo simulation in decision analysis. 

 
Fig. 48 – The average GOR was fit by a type curve. 

 

 
Fig. 49 – The peak three months’ oil percentage were correlated with vitrinite reflectance (Ro). 
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Fig. 50 Combine oil production forecast with GOR curve to generate gas production forecast 

 

C.4.4 Illustrative Economic Example Using the Second Regression Model 

C.4.4.1 Economics Inputs 
Economic inputs used in this illustrative example are summarized in Table 21 to Table 

23.  

Table 21 – Overall economics and capital cost per well 

 
 
 
 
 

Net Working Interest 100%
Yearly Discounted Rate 0.1

CAPEX Low 2.8 $Million

Perforated Interval Low 2500 ft
CAPEX High 3.5 $Million
Perforated Interval High 5500 ft



86 

Table 22 – Oil, gas and condensate prices 

 
 
 

Table 23 – Monthly OPEX per well 

 
 

 

C.4.4.2 Monte Carlo Simulation with DCA 
In order to compare the monetary values among different perforated interval and well 

spacing combinations, we use a normalized area of 640 acres to calculate the normalized 

production and normalized net present value (NPV). We observed that when two groups of 

Oil Revenue
Price 80.00            $/bbl
Price Differential 2.00              $/bbl

Gas Revenue

Price 4.00              $/mmbtu
Price Differential 0.50              $/mmbtu

Field and Processing Shrinkage 28.00%
Residue BTU Adjustment 1.00              mmbtu/mcf

NGL Revenue

NGL Yield 0.110 bbls/mmcf

Price 42.00            $/bbl
Price Differential 4.00              $/bbl

Lease Operating Expense 5,000            
Cost of Operations 1,000            

Water Volume 0.0267 bbls/Mcf

Water Disposal 1.30              $/bbl

Oil Severance Tax Rate 4.60%
Gas & NGL Severance Tax Rate 7.50%

Approximate Ad Valorem Tax Rate 2.00%
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wells are located next to each other, there is normally a non-zero distance between the wells 

parallel to the direction of the laterals; we assumed the distance between two wells end to end is 

1000 ft. As a result, we assumed that each well will occupy an area equal to (PI+1000)*WS, 

where PI is perforated interval length and WS is well spacing. The number of wells using a 

certain perforated interval and well spacing in the normalized area equals the normalized area 

(640 acres) divided by area occupied by each well (Fig. 51). 

Monte Carlo simulations with 5000 iterations were performed to generate economics 

output for different completion strategies. The decline curve parameters were generated from 

Eq. 12, where the expected values for ln(qi), CP6to1, and b are calculated from linear regression 

with errors (ε(ln(qi)), εCP6to1, εb) drawn from the multi-normal distribution shown in Eq. 12. Qi, Di, 

and b for oil production are then calculated from ln(qi), CP6to1, and b. Initial first three months 

oil percentage is calculated based on Eq. 14. Gas production forecasts were calculated based on 

the oil production and the GOR curve. Net present values were calculated based on the oil and 

gas production forecasts generated from the Monte Carlos simulation and the economics input 

shown in the previous section. A correlation of 50% was assumed among wells in the 

normalized area, which means there is a 50% chance that the new well will produce exactly the 

same as the neighbor well with another 50% chance that the new well is independent of the 

neighbor well.  
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Fig. 51 – Occupied area by a single well in normalized area 

 

C.4.4.3 Sensitivity Analysis of Perforated Interval and Tighter Well Spacing 

C.4.4.3.1 Sensitivity Analysis for Perforated Interval 
In the sensitivity analysis, the tighter well spacing was kept at 340 ft (CP6to1 peaks at 

340 well spacing) and Ro was kept at 0.93 (average of 266 wells). Monte Carlo simulations with 

5000 iterations were performed to generate the results. 

• Well count per 640 acres decreases when perforated interval increases because 

longer perforated interval results in greater occupied area by each well and thus 

less well count (Fig. 52). 

• NPV @10% discount rate excluding capital decreases when perforated interval 

increases (Fig. 53). 

• NPV/Capital increases as perforated interval increases (Fig. 54 and Fig. 55). 

• NPV-Capital increases as perforated interval increases (Fig. 56 and Fig. 57). 
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• The uncertainty (P10 – P90) of NPV, NPV/Capital and NPV-Capital are all very 

large. 

 

 
Fig. 52 – Well count per 640 acres vs. perforated interval  

 
 

 
Fig. 53 – NPV(excluding capital) vs. perforated interval. Normalized to 640 acres. 

 



90 

 
Fig. 54 – NPV/Capital vs. perforated interval. Normalized to 640 acres. 

 

 
Fig. 55 – NPV/Capital vs. perforated interval (mean and P50). Normalized to 640 acres.  
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Fig. 56 – NPV-Capital vs. perforated interval. Normalized to 640 acres. 

 

 
Fig. 57 – NPV-Capital vs. perforated interval (mean and P50). Normalized to 640 acres.  

 
 

C.4.4.3.2 Sensitivity Analysis for Well Spacing  
In the sensitivity analysis, we assume well spacing equals the distance to the nearest 

well, perpendicular to the direction of the laterals. The perforated interval was kept at 5500 ft 

(longest in this study area) and Ro was kept at 0.93 (average of 266 wells). Monte Carlo 

simulations with 5000 iterations were performed to generate the results. 
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• Well count per 640 acres decreases when well spacing increases because greater 

distance between wells results in greater occupied area by each well and thus 

less well count (Fig. 58). 

• NPV @10% discount rate excluding capital decreases when well spacing 

increases (Fig. 59). 

• NPV/Capital peaks at well spacing = 340 ft (Fig. 60 and Fig. 61). 

• NPV-Capital peaks at well spacing = 340 ft (Fig. 62 and Fig. 63). 

• The uncertainty (P10 – P90) of NPV, NPV/Capital and NPV-Capital are all very 

large. 

 

 
Fig. 58 – Well count per 640 acres vs. tighter well spacing. 
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Fig. 59 –NPV(excluding capital) vs. tighter well spacing. Normalized to 640 acres. 

 

 
Fig. 60 – NPV/Capital vs. tighter well spacing. Normalized to 640 acres. 
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Fig. 61 – NPV/Capital vs. tighter well spacing (mean and P50). Normalized to 640 acres.  

 

 
Fig. 62 – NPV-Capital vs. tighter well spacing. Normalized to 640 acres. 
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Fig. 63 – NPV-Capital vs. tighter well spacing (mean and P50). Normalized to 640 acres. 

 
 
 

C.4.4.3.3 Sensitivity Analysis for Both Perforated Interval and Well Spacing 
 

After we performed sensitivity analysis for both perforated interval and well spacing 

independently, we plotted the average of important objective functions such as NPV versus 

both perforated interval and well spacing on a 3D surface plot so the effects of perforated 

interval and well spacing can be easily visualized. We determined the following: 

• NPV and oil production normalized to 640 acres decrease when the occupied 

area by a single well increases (perforated interval or well spacing increases) 

(Fig. 64 and Fig. 65). 

• NPV/Capital and NPV-Capital peak at 340 ft well spacing and increase as 

perforated interval increases. Average NPV/Capital and NPV-Capital reach 

maximum values when the perforated interval equals 5500 ft (maximum 

observed in data set) and well spacing equals 340 ft (Fig. 66 and Fig. 67). 
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Fig. 64 – NPV (excluding capital) per section vs. perforated interval and tighter well spacing. 

 

 
Fig. 65 –Oil production per section vs. perforated interval and tighter well spacing. 
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Fig. 66 –NPV/Capital per section vs. perforated interval and tighter well spacing. 

 

 
Fig. 67 –NPV-Capital per section vs. perforated interval and tighter well spacing. 
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C.4.4.3.4 Comparison of Models Based on First and Second Data Sets 
  

A normalized area of 3500 ft * 1000 ft was used to compare the results between the two 

models. Total NPV excluding capital cost of the normalized area generally decreases with 

perforated interval increase and single-well value generally increases with perforated interval 

increase for both models (Fig. 68). 

The relationship between NPV excluding capital cost and well spacing is significantly 

different between the two models (Fig. 69). In the first model, total NPV and single-well NPV 

increase when well spacing increases. In the second model, single-well NPV peaks at 340 ft well 

spacing, while total NPV decreases with increasing well spacing with a bump at 340 ft.  

The agreement between both models regarding the effect of perforated interval indicates 

that the relationship between NPV vs. perforated interval is likely to be present and individual-

well NPV–Capital generally increases as perforated interval increases (within the range of 

perforated intervals investigated). The disagreement between the two models on the 

relationship between NPV and well spacing indicates there is a significant uncertainty 

regarding how well spacing will affect production performance and economics. 

 
Fig. 68 – Comparison between 1st and 2nd data sets vs. perforated interval. Values exclude capital costs and 

are normalized to 3500-ft x 1000-ft area. 
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Fig. 69 – Comparison between 1st and 2nd data sets vs. tighter well spacing. Values exclude capital costs and 

are normalized to 3500-ft x 1000-ft area. 
 
 

C.4.5 Discussion 
Significant uncertainty was observed when performing the sensitivity analysis to 

perforated interval and well spacing. While the Monte Carlo simulation and economic analysis 

indicate the optimal well spacing is around 340 ft and longer perforated intervals outperform 

shorter perforated intervals in terms of average NPV/Capital and NPV-Capital (Fig. 66 and Fig. 

67), there is considerable uncertainty in these conclusions as well.  

Single-well probabilistic oil production forecasts are shown in Fig. 70 for well spacing 

equal to 340 ft and perforated interval equal to 5500 ft. Considerable uncertainty is observed in 

the production forecast. Individual wells produce an average of 60 MSTB oil and generate an 

average NPV–Capital equal to $1.37 million with P90, P50, and P10 values of -$2.73 

million, -$0.44 million, and $7.24 million, respectively, for oil and gas prices of $80/STB and 

$4/Mcf  (Table 24). The average of single-well NPV/Capital = 1.42 with P90, P50, and P10 values 

of 0.22, 0.87 and 3.01, respectively (Table 24).  

The average oil production normalized to 640 acres is 790,000 STB with P90, P50, and 

P10 values of 390,000 STB, 690,000 STB, and 1,260,000 STB, respectively. The average NPV–

Capital equals $17 million with P90, P50, and P10 values of -$14 million, $10 million, and $54 
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million, respectively. Average NPV/Capital equals 1.41 with P90, P50, and P10 values of 0.67, 

1.24, and 2.29, respectively (Table 25). 

   

 
 

 
Fig. 70 – Probabilistic single-well production forecasts for 5500 ft perforated interval and 340 ft well spacing.  
 

Table 24 – Single-well results using 5500-ft perforated interval and 340-ft well spacing. 

 

Table 25 – Results normalized to 640 acres using 5500-ft perforated interval and 340-ft well spacing. 

 

 

Single Well NPV10, $Million Capital, $Million NPV/Capital Oil Production,MMSTB
Mean 4.87 3.5 1.42 0.06

90 0.77 3.5 0.22 0.01
50 3.06 3.5 0.87 0.04
10 10.74 3.5 3.07 0.14

Normalized 640 acres (12 wells) NPV10, $Million Capital, $Million NPV/Capital Oil Production,MMSTB
Mean 59.09 42 1.41 0.79

90 28.11 42 0.67 0.39
50 51.94 42 1.24 0.69
10 96.13 42 2.29 1.26
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C.5 Conclusions 
• Gas and oil production decline behavior of northern Barnett shale wells can be 

correlated to decision variables such as well spacing, perforated interval and 

stimulation fluid volume. 

• The correlations are not high, indicating significant uncertainty in these 

decisions. 

• The two models using two different data sets agree in that there is a positive 

correlation between initial production and perforated interval. Both models 

indicate that NPV-Capital and NPV/Capital increase as perforated interval 

increases, within the range of perforated intervals investigated.  

• The two models resulted in two different relationships between decline curve 

parameters and well spacing, which indicates there is significant uncertainty on 

how well spacing affects well performance.  

• Despite the considerable uncertainty in Barnett shale well performance, 

modeling these relations and their associated uncertainty can aid in optimization 

of spacing, completion and stimulation decisions in this area. 

 
 

D IMPACT TO PRODUCERS 
We have transferred to the industry, through meetings with industry, workshops and 

conferences, and technical papers (see Technology Transfer Efforts below), technology that can 

help operators in unconventional gas reservoirs increase reserves and accelerate production, 

while protecting the environment, by determining the optimal well spacing and completion 

strategy as quickly as possible. It is impossible to develop an integrated reservoir and decision 

modeling tool that can work for all, or even many, different reservoirs. Thus, we have 

developed and transferred an array of integrated reservoir and decision modeling tools that can 

be adapted and tailored to specific reservoir and economic conditions (Table 20). These tools 

range from decline-curve based methods that can be applied more easily and quickly to single-

well and multi-well simulation-based methods that require more data, time and expertise. 
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Operators can choose a preferred reservoir modeling approach based on their interests, 

expertise, time and data available, and the particulars of the reservoir being modeled.  

This project was a “research” project, requiring 20% cost share, rather than a 

“development” project, requiring 50% cost share and field application. As such, we cannot 

directly quantify the impact of our work. However, we believe it to be quite positive, based on 

positive comments we have received from operators when our work has been presented at 

workshops, meetings and conferences. While we cannot yet report results of direct application 

of our technology, we are confident that adoption of the technology and tools we have 

developed and transferred to industry will enable operators to make better decisions with 

regard to spacing and completion/stimulation practices in unconventional reservoirs.  

Table 26 – Range of reservoir models developed  

Production forecast 
methodology 

Decline-curve based 
reservoir model 

Single-well reservoir 
simulation model 

Multi-well reservoir 
simulation model 

Uncertainty 
quantification 

Monte Carlo simulation 
with decline curve 

forecasts 

Monte Carlo simulation 
with reservoir 

simulation 

Monte Carlo simulation 
with multiple 

geological models 

Time required to run 
1000 realizations 10 mins 8 hours 5 days 
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E TECHNOLOGY TRANSFER EFFORTS 
 

We have transferred technology developed in this project to industry specifically 

through Unconventional Gas Resources and Pioneer Natural Resources, whom we worked 

closely with during the two major phases of this project. We have transferred technology 

developed in this project to industry generally through workshops, presentations at 

conferences, and technical papers. A complete bibliography of technology transfer efforts is 

listed below in the section Bibliography of Technology Transfer Efforts. 
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F CONCLUSIONS 
• Three different integrated reservoir and decision modeling systems were developed 

in this project to help operators in unconventional gas reservoirs increase reserves 

and accelerate production, while protecting the environment, by determining the 

optimal well spacing and completion strategy as early in reservoir life as possible.  

• These models provide decision makers with an understanding of the uncertainty 

inherent in unconventional gas reservoir development and allow them to evaluate 

tradeoffs between these risks and other factors such as increased capital spending. 

• These integrated reservoir and decision modeling systems were applied in Deep 

Basin (Gething) tight sands and the Northern Barnett shale play to determine 

optimal well spacing and completion and stimulation strategies. While specific 

strategies were determined for these particular applications, these results are specific 

to the reservoir properties and economic assumptions used in these applications and 

cannot be generalized. 

• The methodologies developed in this project can be applied to other unconventional 

reservoirs with minor changes. 

 

G RECOMMENDATIONS 
 

• The integrated reservoir and decision models developed here should be applied to 

other unconventional reservoirs to validate and improve the methods developed in 

this project. 

• Operators should strive to incorporate probabilistic and decision analytic tools and 

methods into their workflows. This is especially important in unconventional gas, 

where the uncertainties are quite large. 
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J LIST OF ACRONYMS AND ABBREVIATIONS 
 
a  =  the range beyond which variogram remains essentially constant, m 

aC  =  main diagonal of coefficient Matrix A, scf . cp/psi2 . D 

aN, aW  =  north and west flow coefficient, scf . cp/psi2 . D 

aE, aS  =  east and south flow coefficient, scf . cp/psi2 . D 

A  =  well spacing, acre 

b  =  hyperbolic exponent 

B  =  formation volume factor, reservoir ft3/scf 

BY  =  best 12 consecutive months of production divided by 12, MSCM/M 

ct  =  total system compressibility, psi-1 

)(hC   =  covariance function 

CMG = Computer Modeling Group 

CP6to1 =  cumulative production ratio 6 months to 1 month 

d  =  right-side column vector of the 2D flow equation 
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D  =  decline rate, 1/year 

DA = decision analysis 

DCA = Decline curve analysis 

Di  =  initial decline rate, 1/year 

ENPV =  Estimated Net Present Value 

FcD  =  dimensionless fracture conductivity 

GOR = gas oil ratio, scf/STB 

Gp  =  cumulative production, standard cubic feet 

h  =  lag distance between pairs, ft 

h  =  net pay thickness, ft 

IMEX =  CMG’s g Adaptive Implicit-Explicit Black-Oil Simulator  

J’  =  well index
 

k  =  permeability, md 

kgas  =  gas permeability, md 

kf  =  fracture permeability, md 

Lf  =  fracture length, ft 

N         =  normal distribution 

Np  =  cumulative production, MMscf 

NPC =  National Petroleum Council 

NPV  = net present value 

p  =  the vector of well block pressure, psi
 pi  =  initial reservoir pressure, psia 

PI =  Principal Investigator 

Pioneer = Pioneer Natural Resources Company 

 pp  =  real-gas pseudopressure, m/Lt3 , psi2 /cp 

Pr > F and Pr > |t| = P-value, the probability that its corresponding  relationship with decline 

curve parameters do not exist 

pwf   =  flowing bottomhole pressure, psi 
n

jpip ,   =  real-gas pseudopressure in (i,j) grid at n time step, m/Lt3 , psi2 /cp
 

1
1,

+
−

n
jpip   =  real-gas pseudopressure in (i,j-1) grid at n+1 time step, m/Lt3 , psi2 /cp
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1
,1

+
−

n
jpip   =  real-gas pseudopressure in (i-1,j) grid at n+1 time step, m/Lt3 , psi2 /cp

 
1
,
+n

jpip   =  real-gas pseudopressure in (i,j) grid at n+1 time step, m/Lt3 , psi2 /cp
 

1
,1

+
+

n
jpip   =  real-gas pseudopressure in (i+1,j) grid at n+1 time step, m/Lt3 , psi2 /cp

 
1

1,
+

+
n

jpip   =  real-gas pseudopressure in (i,j+1) grid at n+1 time step, m/Lt3 , psi2 /cp
 

q  =  production rate, Mscf/D or STB/D 

qi  =  initial production rate, Mscf/D or STB/D 

Ro =  vitrinite reflectance 

RPSEA = Research Partnership to Secure Energy for America 

ro  =  equivalent radius of well gridblock, L, ft 

rw  =  wellbore radius, L, ft 

s  =  skin factor, dimensionless 

scf =  standard cubic feet 

SGS =  Sequential Gaussian Simulation 

STB =  stock tank barrel 

t0  =  transition time, years 

T  =   temperature, T, ºR 

TEES  =  Texas Engineering Experiment Station 

Ts c  =   temperature at standard condition, ºR 

TTW =   Technology Transfer Workshop 

Δt  =   timestep, t, days 

UGR =  Unconventional Gas Resources Canada Operating, Inc. 

UQ =  Uncertainty Quantification 

US DOE = U.S. Department of Energy 

VBA =  Visual Basic Application for MS Excel  

Vp  =  pore volume of gridblock, L3, ft3 

VBY  =  virgin best year, MSCM/M 

w  =  fracture width, ft 

WS1 =  shorter well spacing, ft 

WS2 =  longer well spacing, ft 

WSA =  average well spacing, ft 
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z  =  z factors 

α  =  coefficient in the aC equation 

ɛb = error between linear regressed b and least square fit b 

ɛCP6to1 = error between linear regressed CP6to1 and least square fit CP6to1 

ɛln(qi) = error between linear regressed ln(qi) and least square fit ln(qi) 
)(hρ   =  correlation function 

2,1ρ  = correlation coefficient between stages 

)(hγ   =  semi-variogram 

μ  =  viscosity, cp 

μ1 = expected value for discounted cumulative production for stage-1 

μ2 = expected value for discounted cumulative production for stage-2 

μ2/1(a)  =  expected discounted cumulative production at stage-2 giving the discounted 

cumulative production of stage-1 

φ   =  porosity, fraction 

σ = standard deviation 
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K APPENDIX A: SAS OUTPUT 
 

The tables in this appendix include the linear regression models of ln(qi) and CP6to1. 

Each linear regression model consists of three parts for the 1st data set. The first two parts 

include the statistics for the entire model, while the third part includes statistics for each 

independent parameter (decision/reservoir parameters). The “Pr > F” and “Pr>|t|” columns in 

the first and third parts are p-values, which represent the probabilities that the corresponding 

relationships do not exist. In these two models, all of the p-values are less than 0.01. This means 

that, for every relationship included in the linear regression models, there is only a 1% chance 

that the relationship does not exist, which gives us confidence that the regression models are 

valid. 

                               The GLM Procedure 
Dependent Variable: lnqi 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                       1    18.72076276    18.72076276     25.09   <.0001 
 Error                      62    46.26364387     0.74618780 
 Corrected Total            63    64.98440662 
 
               R-Square     Coeff Var      Root MSE    logqi Mean 
               0.288081      17.45479      0.863822      4.948909 
 
                                         Standard 
       Parameter         Estimate           Error    t Value    Pr > |t| 
       Intercept      3.782191508      0.25674152      14.73      <.0001 
       Interval       0.000346087      0.00006910       5.01      <.0001 

  
 
Dependent Variable: CP6To1    
 
                                       Sum of 
 Source                     DF        Squares    Mean Square   F Value   Pr > F 
 Model                       3    14.47647626     4.82549209      9.78   <.0001 
 Error                      60    29.60801375     0.49346690 
 Corrected Total            63    44.08449001 
 
              R-Square     Coeff Var      Root MSE    MP6To1 Mean 
              0.328380      23.55956      0.702472       2.981685 
 
                                                Standard 
Parameter                     Estimate             Error    t Value    Pr > |t| 
Intercept                 -0.756564310 B      0.95538163      -0.79      0.4315 
WS1                        0.001495744        0.00045032       3.32      0.0015 
WS1_C          N           1.843330080 B      0.64911530       2.84      0.0062 
WS1_C          WS2000      0.000000000 B       .                .         . 
Fluid_Interval             0.022245455        0.00580230       3.83      0.0003 
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L APPENDIX B: DISCRETIZATION AND SIMULATION 
 

Most decision or risk analyses include continuous random variables (e.g., oil in place, oil 

price, or porosity). Analysts are frequently concerned with how to best structure, compute, and 

communicate decision models under these circumstances. While decision trees are well suited 

for discrete random variables with a few possibilities, they can become unmanageable when the 

number of outcomes is large. For example, trees may become too large to easily display or the 

large number of endpoints may require too many evaluations of a possibly costly (to evaluate) 

objective function (e.g., runs of a reservoir simulation model).The question we address in this 

paper is how one should include continuous random variables in a decision tree given these 

limitations.  

Two approximation methods, which are closely related, have been developed to address 

this problem: discretization and Monte Carlo (MC) simulation. Specifically, suppose we are 

constructing a decision model that takes as an input the continuous random variable (rv) X (e.g, 

oil in place). Under either discretization or Monte Carlo simulation, we approximate the 

continuous probability density function (pdf) f(x), or the cumulative distribution function (cdf) 

F(x), with a set of values ∈ix X , i = 1, 2, …, N, and associated probabilities pi ≡ p(xi). In MC 

simulation, N is generally large (in the thousands) and the xi are randomly drawn from the 

entire support of X using methods such as the inverse cumulative method (Clemen and Reilly 

2001). In this case, X = F-1(U), where F-1 is the inverse cdf and U is uniformly distributed over [0, 

1]. The inverse cumulative method assures that X is distributed according to F. Discretization 

methods, on the other hand, comprise only a few points (three is common), but seek to choose 

points that will preserve desired properties of X. The most natural and common properties of 

interest are the raw (e.g., the mean) and central moments of X (e.g., variance, skewness, 

kurtosis). As we discuss below, if an approximation fails to preserve the moments of X it is 

unlikely that it will accurately preserve the moments of the output distribution (Miller and Rice 

1983; Smith 1993), including the mean, which are of interest to decision makers. Since the 

moments of a pdf do not uniquely determine the underlying pdf (an infinite number of 

distributions have a mean of zero and a variance of one, for example) the discretization 
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methods discussed in this paper, and used throughout the oil and gas industry, may fail to 

match particular percentiles of the pdf or extreme values even though they match many 

moments. This important and underappreciated distinction means that calculating the 

probability of exceeding particular values of the output variable (e.g., the probability of 

exceeding zero) based on a cumulative distribution that is comprised of a several discretized 

input uncertainties may not be justified. We do not address this issue here. Rather, our goal will 

be to match the moments of the input pdfs, with the caution that this process is designed only to 

estimate the moments of the output distribution. 

Several discretization methods are in common use. For example, Swanson’s Mean (SM), 

which weights the 10th, 50th, and 90th percentiles of F(x) by 0.30, 0.40, 0.30, is heavily used within 

the oil and gas industry (Megill 1984; Hurst et al. 2000; Rose 2001). However, SM is neither the 

only, nor, as we shall see the, the best choice.  

Interest in discretization methods within the oil and gas industry has recently increased. 

For example, Arild et al. (2008) compared the use of SM to MC simulation in the context of a 

value of information (VOI) problem. They demonstrated that the two methods yield different 

results, but were unable to comment on which approach is closer to the true VOI, since their 

problem did not have an analytic (closed-form) solution. Prange et al. (2009) compared a 

numerical approximation method to a discretization method and found that the discretization 

was inaccurate. Thus, these two papers have suggested the use of MC simulation instead of 

discretization. Willigers (2009), on the other hand, recommends the use of discretization instead 

of MC in order to reduce the number of computations and speed the analysis of asset portfolios. 

This appendix is organized as follows. In the next section we review the theory 

underlying discrete approximations and discuss the accuracy of common methods. In the third 

section, we discuss the accuracy of discretization methods and the demonstrably poor 

performance of SM. In the fourth section we contrast the use of discrete approximations to MC 

simulation and demonstrate that the best discretization methods are equivalent to hundreds of 

thousands of MC trials. We provide a simple example in section five, which demonstrates that 

different discretizations yield different value estimates and possibly different recommendations 

for action. Finally, in the sixth section we conclude and provide recommendations for practice. 
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L.1 Discrete Approximations: Methods and Shortcuts 
Before we discuss specific discretization methods, we begin with a brief review and 

introduce the notation we use throughout the paper. The k-th raw (or uncentered) moment of rv 

X with pdf f(x) is 

 [ ] ( ) 0,1, 2,k k
k X

E X x f x dx kµ = = =∫  , (1) 

where E[-] is the expectation operator. The zeroth raw moment specifies that the probabilities 

must integrate (or sum) to one. The first raw moment µ1 is the mean. Raw moments measure the 

distribution of a rv about the origin. Central moments, on the other hand, measure the 

distribution about the mean.1 The k-th central moment of X is 

 1 1[( ) ] ( ) ( ) 0,1, 2,k k
k X

m E X x f x dx kµ µ= − = − =∫ 
. (2) 

The second central moment is the variance and is given the special symbol σ2. 

There is a one-to-one relationship between the raw and central moments. For example, if 

one knows the raw moments µk the central moments can be found as follows (Papoulis 1984, p. 

110): 

 
( ) 1

0
1

k
k j k j

k j
j

k
m

j
µ µ− −

=

 
= − 

 
∑

. (3) 
Hence, the second central moment, the variance, expressed in terms of the raw 

moments, is  

 ( )22 2
2 2 1 [ ] [ ]m E X E Xµ µ= − ≡ − . 

Two normalized central moments, skewness and kurtosis, measure other properties of 

the distribution. Skewness is a measure of asymmetry and is given by 3/2
3 3 2m mγ −= . Kurtosis 

measures the distribution’s degree of “peakedness” or how thick its tails are. Kurtosis is defined 

as 2
4 4 2 3m mγ −= − . The minus three normalizes kurtosis relative to the normal distribution, which 

has a kurtosis of three. 

                                                 
 
 
1 Central moments are simply raw moments of the transformed variable Y = X - µ1. 
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L.1.1 The Motivation for Moments.  
Suppose we are interested in a value function v(x), which is a function of a rv X. This 

value function might be net present value (NPV) or ultimate hydrocarbon recovery. If this value 

function is sufficiently differentiable, such that it can be approximated by a polynomial P(x) of 

degree N, then we have 

 
0

( ) ( )
N

k
k

k
v x P x w x

=

≈ = ∑ , (4) 

for the weights wk.2 The mean, or expected value of v(x) is given by 

 
0 0

[ ( )] [ ( )] [ ]
N N

k k
k k

k k
E v X E P X E w X w E X

= =

 
≈ = = 

 
∑ ∑ . (5) 

Thus, the expected value of v(x) is an expansion of the raw moments of X. Therefore, if 

one wants to accurately compute the expected value of the value function (e.g., expected NPV), 

all the moments of f(x) must be represented accurately. It is not sufficient, as is sometimes 

assumed, to accurately reflect only the mean value of input uncertainties. To make this concrete, 

suppose that v(x) = x2 and that X is a normal random variable with zero mean and unit variance. 

The expected value of v(x) is equal to 1, while v evaluated at the expectation is equal to zero. 

Our goal then will be to develop discretization methods which preserve the moments of input 

distributions. Before we discuss particular discretizations, however, we will formally state the 

approximation problem. 

L.1.2 Formal Statement of Approximation Problem.  
Given a pdf f(x) and function Ω(x), we wish to approximate a definite integral with a 

finite sum, 

 
1

( ) ( ) ( )
N

i iX
i

f x x dx p x
=

Ω ≈ Ω∑∫ , (6) 

by choosing values xi and weights (or probabilities) pi. In other words, we seek to approximate 

the pdf with a discrete probability mass function (pmf). This procedure, originally developed by 

Gauss in the early 1800s (Gauss 1866), is known as Gaussian quadrature. If Ω is a polynomial 

then the approximation in (6) holds with equality (Davis and Rabinowitz 1984).  

                                                 
 
 
2 This discussion closely follows Smith (1993). 



119 

In this appendix, we analyze the particular case Ω =( ) k
i ix x , where k = 0, 1, 2, … represents 

the k-th raw moment of X. Thus, we have 

 
1

[ ] ( ) ( ) ( ) for 0,1,2, ,
N

k k k
i iX X

i
E X f x x dx f x x dx p x k N

=

= Ω = = =∑∫ ∫  , (7) 

for a set of probabilities pi and values xi; our challenge is to find these parameters. As an 

example, consider k = 0, in which case (7) requires that the discrete probabilities sum to 1. When 

k = 1, Equation (7) requires that we match E[X], or the mean, and so on. This application of 

Gaussian quadrature is referred to as moment matching (Miller and Rice 1983; Smith 1993). An 

approximation with N points can match 2N moments of X, including the zeroth moment 

(Stroud and Secrest 1966; Miller and Rice 1983). For example, a three-point approximation can 

match the zeroth through the fifth moment of X. This remarkable fact enables one to preserve 

many characteristics (mean, variance, skewness, kurtosis, etc.) of commonly used distributions 

with a limited number of points, assuming these moments are finite.  

Gaussian quadrature provides both an organizing framework for understanding the 

objective of discretization and a computational method for determining the best approximation. 

However, many commonly used approximations fail to match some or all of the moments of X. 

We discuss the differing approaches below, which we divide into general methods and 

shortcuts. The general methods are intended for use on a case-by-case basis and are tailored to 

the underlying pdf. The shortcuts are “non-parametric” in that they are discretizations that are 

applied to any pdf, irrespective of its shape. Typically, these are discretizations that were found 

to work reasonably well over some set of commonly encountered pdfs, but are applied more 

generally than might be warranted. 

L.1.3 General Discretization Methods.  
In this section we describe three general discretization methods: Moment Matching, 

Bracket Median, and Bracket Mean. 
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Moment Matching. The most accurate general method for matching moments is, of course, 

Gaussian quadrature or moment matching itself.3 This approach can be applied to any pdf for 

which the moments are known. Quadrature rules have been calculated and published for 

several commonly encountered pdf families. For example, Miller and Rice (1983) presented the 

two-, three-, and four-point Gaussian quadratures for the standard uniform, normal, and 

exponential distributions. We repeat these results in Table B1.4 However, instead of providing 

the values xi, we provide the percentiles of the excess distribution function (edf), also called the 

complementary cdf, which is used more frequently than the cdf in oil and gas settings. These 

percentiles are αi ≡ G(xi) x 100 = (1 - F(xi)) x 100.  

We summarize an approximation as the set of probabilities and percentiles (pi; αi). As 

shorthand, we will refer to the Z-th percentile of the edf as the PZ. For example, the 50th 

percentile is the P50. The two-point approximation of the normal distribution may be 

summarized as (0.500, 0.500; P84.1, P15.9). The three-point approximation of the normal is 

(0.167, 0.667, 0.167; P95.8, P50.0, P4.2). This simple approximation will match the first six 

moments of the normal distribution, including the requirement that the probabilities sum to 

one. It may help the reader to think of the discretizations in Table B1 as probability trees. For 

example, the three-point approximation for the normal is shown in Figure B1. 

In the case of the uniform distribution, Gaussian quadrature does not result in equal 

weights on uniformly dispersed values. For example, one might think that an equal weighting 

of the P75, P50, P25 would perfectly match the uniform distribution since both the values and 

the probabilities have been divided uniformly. In fact, this approximation underestimates the 

variance by 50%.  

Bracket Median and Bracket Mean (or Equal Areas). In two intuitively appealing methods, Bracket 

Median (Clemen and Reilly 2001) and Bracket Mean (McNamee and Celona 1990), the excess 

                                                 
 
 
3 While we are using a special case of Gaussian quadrature, where Ω =( ) k

i ix x , we will use the terms moment 
matching and Gaussian quadrature interchangeably. 
4 Miller and Rice provided their results to six significant figures, but we round these to three significant figures to 
facilitate communication. Readers requiring more accuracy should consult Miller and Rice (1983). 
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distribution G(x), is divided horizontally into N intervals as shown in Figure B2. It is common 

for the intervals to be of unequal size in the Bracket Mean approach and of equal size in the 

Bracket Median approach, although in neither case is it required. The probability that X will be 

in interval i is Gi – Gi-1. Given that X is in interval i, we summarize the conditional distribution 

of X (conditional on X being within the interval) by a single number. Bracket Median takes this 

number to be the median, while Bracket Mean uses the mean. Since these conditional 

distributions are generally skewed, the median and the mean differ and the two approaches 

may result in (very) different discretizations. For example, applying the three-point Bracket 

Median and Bracket Mean methods with intervals of 0.25, 0.50, 0.25 to the normal distribution 

yields discretizations of (0.25, 0.50, 0.25; P87.5, P50.0, P12.5) and (0.25, 0.50, 0.25; P89.8, P50.0, 

P10.2), respectively. The difference between the approaches is greater for skewed distributions 

such as the lognormal. 

The advantage of the Bracket Median approach is that the median of each interval is 

simply that interval’s midpoint, Gi-1 + (Gi – Gi-1)/2, which can be read directly off of the excess 

distribution, whereas, the mean of each interval must be calculated. For certain distributions, 

such as the normal, this calculation is straightforward. For other distributions, including 

subjectively assessed distributions that may not belong to any family, this calculation may be 

complex. However, there is a graphical method to estimate the interval means that gives 

Bracket Mean its more common name of “Equal Areas.” As shown in Figure B2, the mean of 

each interval i is the point at which the area Ai to the left and above the excess distribution is 

equal to the area below and to the right. The interested reader should see McNamee and Celona 

(1991, pp. 18-21) for a proof of this fact. In our experience, individuals are skilled at finding 

these points by eye. 

L.1.4 Discretization Shortcuts.  
The general methods discussed above can be tailored to the shape of the distribution. For 

example, the intervals in Equal Areas need not be symmetric and extra attention can be placed 

on particular portions of the distribution, such as the tails. Yet, this flexibility comes at a cost—

one must compute the appropriate discretization. For this reason, several shortcut methods 
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have been developed. In what follows, we discuss the approximations in the order in which 

they were originally proposed. 

Pearson and Tukey (1965) developed a three-point discretization meant to closely 

approximate the mean of common pdfs, including the normal, beta, gamma, inverse gamma, 

and Student’s t distributions (the uniform was not included). Their three-point approximation 

of the mean is (0.185, 0.630, 0.185; P95, P50, P5), which was found to work well except for 

distributions that were highly skewed. Pearson and Tukey did not recommend this 

approximation for higher moments and instead provided a more complex approximation for 

the standard deviation. However, Keefer and Bodily (1983), based on work by Keefer and 

Pollock (1980) and their own supporting analysis, suggested treating the Pearson-Tukey 

approximation as a complete pmf and referred to this as “Extended Pearson-Tukey” (EPT). 

The Equal Areas method discussed above was developed by Jim Matheson and his 

colleagues at the Stanford Research Institute (SRI) between the late 1960s and the early 1970s.5 

Application of this method to the normal distribution produces an approximation of (0.25, 0.50, 

0.25; P89.8, P50, P10.2). Based on this, SRI began using a shortcut of weighting the P90, P50, P10 

by 0.25, 0.50, 0.25, which is sometimes referred to at the 25-50-25 approximation. This method 

was then heavily used and popularized by Strategic Decisions Group (SDG), which was 

founded by individuals from SRI’s decision analysis group. SDG trained hundreds of oil and 

gas professionals in decision analysis methods and helped to establish existing decision analysis 

programs at several major corporations, including Chevron; this explains the use of 25-50-25 in 

oil and gas settings. The shortcut is described in McNamee and Celona (1990, pp. 32-33) and has 

come to be known as the “McNamee and Celona” shortcut or MCS. McNamee and Celona, SDG 

consultants at the time, cautioned that this shortcut should be used in the “early stages” of 

analyzing a decision and that one needs to carefully assess the distribution and develop a full 

discretization (using Equal Areas) “more carefully later on!” [emphasis in original]. Over time, 

this guidance has been widely forgotten and today MCS is commonly applied without regard 

                                                 
 
 
5 Personal communication with Jim Matheson and Peter McNamee. 
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for the shape of the underlying distribution and is not followed with a secondary and more 

careful assessment and discretization.  

While working for Exxon, Roy Swanson, in a 1972 internal memo, proposed 

approximating mean reserves, by weighting the P90, P50, P10 of the reserves edf by 0.30, 0.40, 

0.30 (Megill 1984, Appendix B ; Hurst et al. 2000). Following the discussion above, we will refer 

to this as a 30-40-30 weighting. According to Megill (1984, p. 187), Swanson arrived at this rule 

empirically and found that it reasonably approximated the mean of “modestly skewed” 

distributions. Like Pearson and Tukey before him, Swanson (apparently) did not propose using 

his approximation to estimate higher moments or as a complete pmf. However, Keefer and 

Bodily (1983) proposed treating Swanson’s 30-40-30 rule as a complete pmf and referred to it as 

“Extended Swanson-Megill” (ESM). The general use of ESM, especially in the case of the 

lognormal, has been advocated by Pete Rose and his colleagues at Rose & Associates (Hurst et 

al. 2000; Rose 2001). As we will see below, ESM is close to a Gaussian quadrature for the normal 

distribution that matches the mean and variance. However, when directly applied to a 

lognormal distribution, ESM fails to match the mean and significantly underestimates the 

variance and the skewness. 

Before discussing the other discretization methods, we pause briefly so that we can 

emphasize the difference between developing an approximation of the mean and an 

approximation of the pdf. A mean does not uniquely determine a pdf; there are an infinite 

number of pdfs with the mean of 5, for example. Therefore, one could very easily find an 

approximation that matches the mean, but fails to faithfully represent the underlying pdf. This 

is the case with Swanson’s Mean. Swanson did not suggest using his method to approximate 

the pdf of reserves; he only suggested that it be used to approximate the mean. However, 

approximations that only work well for the mean are not particularly useful in most decision 

analyses. Using a discretization in a probability or decision tree as shown in Figure B1, 

implicitly assumes that it is an accurate representation of the pdf, not just the mean of that pdf. 

Thus, strictly speaking, Swanson’s method cannot be used in a decision tree because it was 

intended merely to be a method for estimating the mean of a distribution. When Swanson’s 
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values (0.30, 0.40, 0.30; P90, P50, P10) are used in a decision tree it is really an application of 

Extended Swanson-Megill which describes a probability mass function (pmf). 

Returning to our discussion of the various shortcuts, Miller and Rice (1983) introduced 

the use of Gaussian quadrature to the decision analysis literature. As detailed above, this 

method can exactly match as many moments of any pdf as desired, as long as the moments are 

finite. However, in practice it would be helpful to have these discretizations pre-calculated. This 

is possible in the case of known pdf families, as shown in Table B1. When one is dealing with a 

distribution that is not from a known family (as might happen if the distribution is directly 

assessed by an expert, for example) Miller and Rice proposed several generic discretizations 

based on Gaussian quadrature. For a three-point approximation, Miller and Rice proposed 

weighting the P91.5, P50.0, and P8.5 by 0.248, 0.504, 0.248. This approximation has become 

known as the “Miller-Rice One Step” (MRO). Notice that MRO is very close to the Bracket Mean 

approximation applied to a normal distribution and MCS. This correspondence further 

supported the MCS shortcut and SDG’s use of it. 

D’Errico and Zaino (1988) and Zaino and D’Errico (1989) used Taguchi’s method 

(Taguchi 1978) to develop two approximations. First, equally weighting the P89, P50, P11, 

which we refer to as the ZDT approximation. Second, applying the three-point Gaussian 

quadrature formula for the normal distribution (0.167, 0.667, 0.167; P95.8, P50.0, P4.2), displayed 

in Table B1, more generally. We will refer to this approximation as GQN. We summarize each 

of the discretization shortcuts in Table B2. 

L.1.5 Moment Matching with Fixed Values or Fixed Probabilities.  
After many years of use, approximations with values fixed at the P90, P50, P10 (MCS 

and ESM) or weightings of 25-50-25 (MCS) or 30-40-30 (ESM) have become common. Yet, the 

ESM and MCS shortcuts are not distribution specific and therefore may induce unnecessary 

errors. In this section, in an effort to improve practice, we apply moment matching to develop 

rules for (a) weighting the P90, P50, and P10 and (b) values with fixed weights of 25-50-25 or 30-

40-30. We consider the uniform, normal, exponential, and triangular distributions. These results 

appear in Table B3, Table B4, and Table B5.  
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As seen in Table B3, the weights for the normal are nearly identical to ESM. As such, 

ESM almost matches the mean and variance of a normal distribution. The listed triangular 

results are for a mode, c, of 0.5. However, the weights are a very weak function of c. For 

example, when c = 0.1 the weights are (0.277, 0.451, 0.272). Thus, the values listed in Table B3 

should provide satisfactory results in most situations. 

It is not always possible to fix the values and find a feasible solution (Smith 1993). For 

example, a weighting of a lognormal’s P90, P50, P10 that will simultaneously match the mean 

and variance is very often impossible to find if the underlying distribution is even modestly 

skewed. This underscores the futility of the common practice of applying ESM or MCS without 

regard for the underlying distribution or, indeed, in lieu of considering the nature of that 

distribution. To remedy this, in Table B6 we present several approximations for the lognormal 

with any mean but the listed standard deviation (in terms of ln X), using four points. These 

approximations will match the mean and variance when applied directly to lognormal 

distributions with the stated standard deviation; as we discuss more fully below, matching the 

skewness of a lognormal is very difficult. The values that we have found to work well are the 

P90, P50, P5, and the mode (most likely value).6  

L.2 Accuracy of Discretization Methods 
Given the variety of discretization methods, the question naturally arises as to which 

approximation is best. Or, perhaps more correctly, in which situations do the various 

approximations perform well or poorly? When the pdf is from a family given in Table B1 (or 

Tables K3-K6), the Gaussian quadrature formulas exactly match the first 2N underlying 

moments of the original pdf, by definition. Thus, they can be taken as a “gold-standard” of 

accuracy. 

Miller and Rice (1983) proved that Equal Areas will always underestimate the even 

moments of the original distribution. This occurs because xk is convex when k is even and, by 

                                                 
 
 
6 If X is lognormally distributed then the mode of X is Exp[μ – σ], where μ = E[ln X] and σ2 = E[((ln X) – μ)2]. 
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Jensen’s Inequality7, the expectation of a convex function will exceed the value of the function 

evaluated at the expectation. In the case of odd k, the direction of the error is more difficult to 

sign. If x is positive (negative) then the odd moments will be underestimated (overestimated), 

since xk is convex (concave). Thus, direct application of Equal Areas to a lognormal distribution 

(which cannot take negative values) will underestimate all moments.  

Keefer and Bodily (1983) tested EPT and ESM (among others) across a range of beta 

distributions, which can assume a wide variety of shapes and thus higher moments. They 

concluded that EPT is the “clear winner.” Both EPT and ESM approximated the mean 

reasonably well; the average (maximum) errors were 0.02% (0.07%) and 0.05% (0.33%) for EPT 

and ESM, respectively. However, the two approaches differed in their ability to approximate 

the variance. The average (maximum) errors were 0.46% (-1.6%) and 2.7% (11.1%). Keefer (1994) 

extended the analysis of Keefer and Bodily (1983) by analyzing the accuracy of MCS, MRO, 

GQN, and ZDT across a range of beta distributions. In terms of estimating the mean and 

variance, he found that EPT slightly outperformed GQN, and that they both dominated ESM, 

MRO, MCS, and ZDT. 

L.2.1 Swanson’s (Inaccurate) Mean.  
Given the widespread use of ESM in the oil and gas industry, and the fact that it is being 

used as intended, which is not the case for MCS8, it seems appropriate to scrutinize its accuracy. 

The studies discussed above demonstrated the rule’s inability to accurately approximate the 

variance of many distributions. In this section we more carefully analyze the use of ESM to 

approximate lognormal distributions; since its inception, ESM has been used to summarize 

reserve distributions, and reserves are widely held to be lognormally distributed (Rose 2001). 

Likewise, Rose has advocated the use of ESM specifically for use with lognormal distributions 

(Rose 2001, Appendix A). 

Megill (1984, Appendix B) directly applies ESM to the lognormal and finds that ESM 

underestimates the mean by around 10% for modestly skewed distributions, which he 
                                                 
 
 
7 E[v(X)] ≥ v(E[X]) if v is a convex function. 
8 The reader should bear in mind that MCS was never recommended as a final approximation, as ESM has been. 
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associates with “typical prospect ranges.” However, he also finds that ESM underestimates the 

mean by 45% for more skewed distributions, which he associates with “typical basin-play 

ranges for field size distributions.” Megill concludes that “Swanson’s rule should not be applied 

to obtain the mean of play or basin assessments.” We extend Megill’s analysis in Figure B3, 

which plots the error in ESM’s estimate of the mean, variance, and skewness for a lognormal 

distribution, against the ratio of the P10 to the P50, which Megill intended to be a measure of 

skewness. As Megill stated, ESM underestimates the mean by up to 45% in this example. What 

Megill did not mention is that it also underestimates the variance by 80% for the typical 

prospect range and by 100% for more skewed distributions. ESM’s estimation of the skewness is 

even worse.  

Rose (2001) supports his use of ESM by arguing that reserves above the P1 of a 

lognormal occur with much less than a 1% frequency, and therefore the lognormal should be 

truncated above this point. Doing so reduces skewness and does improve the accuracy of ESM. 

However, Rose supports his argument by analyzing only the mean and examining a single 

lognormal distribution with a mean of 15.1 and a standard deviation of 28.2—implying a 

skewness of 3.9. In this case, ESM underestimates the true mean by 1.5%. However, it also 

underestimates the variance by 59% and the skewness by 78%. Furthermore, under a different 

truncated lognormal distribution with a skewness of 4.9, ESM underestimates the mean by 10%, 

the variance by 77% and the skewness by 83%. 

Swanson’s Mean can be directly applied to lognormal distributions by applying it to the 

logarithm of X, instead of directly to X. If X is lognormally distributed then ln X is normally 

distributed and the moments of X are functions only of the mean μ and variance σ2 of ln X. The 

equations for the first four moments of X appear below9: 

 21
1 2( )X Expµ µ σ = +   (8) 

 ( )2 2
2 ( ) 2 1m X Exp Expµ σ σ   = + −     (9) 

 ( )( )1/22 2
3 ( ) [ ] 2 [ ] 1X Exp Expγ σ σ= + −  (10) 

                                                 
 
 
9 These formula can be found in most probability textbooks or online at http://mathworld.wolfram.com/. 
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 2 2 2
4 ( ) 4 2 3 3 2 6X Exp Exp Expγ σ σ σ     = + + −      . (11) 

To use SM we would simply determine μ and σ2 by applying the 30-40-30 

approximation to ln X, which is normal. Substituting these values into Equations (8) through 

(11) would almost perfectly match the first four moments of X, which is lognormal. This 

approach would reduce all the errors in Figure B3 to zero. This “log-SM” approximation is a 

significant improvement over SM and is only slightly more complicated—requiring the use a 

logarithm and an exponential.  

If we want to truncate the lognormal distribution at, say, the P1, we simply need to 

truncate the underlying normal distribution at the P1, which is elementary. We can then find a 

Gaussian quadrature for this truncated normal. For example, if we want to truncate the 

lognormal at the P1, a Gaussian quadrature of (0.32, 0.37, 0.31; P89.1, P50, P9.9) of the original 

untruncated normal will exactly match the first three moments of the normal and, therefore, the 

lognormal distribution. This approximation would reduce all of the errors in Rose’s (2001) 

example to zero. 

L.3 Why Not Just Simulate? 
Thus far, we have compared discretization methods among themselves and found that 

some, such as Extended Swanson-Megill and naïve uses of McNamee-Celona, produce 

significant errors. One may wonder then, given the widespread availability and use of Monte 

Carlo methods, why use discretization at all?10 We must remember that MC is also an 

approximation. Discretization methods induce approximation error, while MC methods include 

sampling error. The relevant question is whether or not MC is more accurate than discretization 

and which situations lend themselves to each method. To address this, this section offers some 

reasons as to why one may prefer to use discretization rather than simulation. More 

importantly, we determine how many MC samples are required to achieve the same accuracy as 

each discretization method.  

                                                 
 
 
10 As one analyst argued, “After all, my Monte Carlo software package includes the lognormal distribution.” 
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L.3.1 Modeling Difficulties.  
From a modeling perspective, MC simulation is not easy to implement in situations that 

include downstream decisions or options. A generic example appears in Figure B4. In this case, 

a decision D1 is made at the beginning of Stage 1. Then, a possibly continuous uncertainty X is 

revealed yielding a particular value x. At the start of Stage 2, decision D2 is made, with 

knowledge of D1 and x. Then, the possibly continuous uncertainty Y is realized. To make this 

situation concrete, suppose that D1 is a decision about the acquisition of seismic data, X is the 

result of the seismic survey, D2 is the decision to drill, and Y is the economic value of the 

reservoir (Stibolt and Lehman 1993; Bickel et al. 2008). 

To evaluate this decision tree, we start at the end and roll-back (McNamee and Celona 

1990; Clemen and Reilly 2001). Suppose we only seek to maximize expected values (i.e., we are 

risk neutral) and that X and Y are dependent. In this case, we would need to compute E[Y | X = 

x] to choose the optimal alternative at Stage 2. If this conditional mean cannot be expressed as a 

function of x we must simulate Y for each realization of X. If we are performing 1000 MC trials, 

for each of the 1000 trials for X we would have to perform an additional 1000 trials for Y | X = x, 

requiring 10002 or 1 million trials. This nested MC is not straightforward to implement and may 

require a long time to evaluate. 

L.3.2 Costly Evaluation.  
The second reason one may prefer discretization methods is that they require fewer 

points (generally many fewer points) to match the underlying moments. Since each point or MC 

trial requires the evaluation of an output function (e.g., NPV) this process may be 

computationally costly. To understand this more fully, we can determine the number of MC 

samples that would be required to achieve the same accuracy as a discretization method (Pfeifer et al. 

1991). We refer to this as S-equivalence. 

The N-point Gaussian quadratures in Table B1 exactly match the first 2N moments of the 

uniform, normal, and exponential distributions. Even in the case when N = 2, these 

approximations exactly match the mean, variance, and skewness of the original distributions. 

As such, MC could not do a better job approximating these moments. The shortcuts listed in 

Table B2 may, on the other hand, fail to match some moments of certain distributions. We will 
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determine S-equivalents for these shortcut-distribution combinations. Based on Equation (5) 

and to ease of exposition, we focus only on the raw moments. 

Uncertainty in Moments. Imagine creating a new distribution k
kY X=  from which we will sample 

in order to estimate the raw moments of X. The mean of kY , kµ , is the k-th raw moment of X. For 

example, if k = 1 then we would simply sample from X. Each set of S samples would produce an 

estimate of the mean of X. However, each time we rerun our MC simulation using S samples we 

would compute a different mean. In other words, the sample raw moments are random 

variables. We quantify their uncertainty by computing their central moments (e.g., the 

variance). The j-th central moment of kY  is  

 [( [ ]) ] [( ) ]k j k j
j k k km E Y E Y E X µ≡ − = − . (12) 

If k equals 1 and j equals 2 then we have 

 
1 2 2
2 1 2 1[( ) ]m E X µ µ µ≡ − = − , (13) 

which is the familiar formula for the variance written in terms of raw moments. When referring 

specifically to the variance of the k-th raw moment, we will use the symbol 2
k k kσ σ σ≡ . 

Discretization Accuracy. Let ck be the difference between the true moment µk and the 

approximate moment ˆkµ , obtained via a discretization. It will be useful to normalize this 

difference by the standard deviation of the moment, which may be obtained via Equation (12). 

We write the accuracy of the approximation as 

 
2

ˆk k k
k

kk

c

m

µ µ
δ

σ
−

= =

. (14) 
Computing S-Equivalence. Now, suppose that instead of using a discretization, we estimate kµ  

via MC simulation. Let the estimated value, which is an average, given S samples be ;k Sµ . 

According to the Central Limit Theorem (CLT), ;k Sµ  is normally distributed with mean kµ  and 

variance 2 /k Sσ  for large S. Thus, the probability that the simulation will more accurately 

estimate kµ  than the discretization method is (see section K6 for derivation) 

 
( ) ( ); 2 1.k S k kP c xµ µ− ≤ = Φ −

 (15) 
where kx Sδ=  and Φ is the standard normal cdf. If we want this probability to be τ then we 

must take  
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2
2 1 1

2kS τδ − − + = Φ  
   (16) 

samples (see section K6 for derivation). For example, if we want the simulation to have a 95% 

chance of estimating the k-th raw moment more accurately than the discretization we must take 

( )22 1 2 21.95 / 2 1.96k kS δ δ− − −= Φ ≈ ⋅  samples. Thus, Equation (16) establishes an equivalence between 

discretization and simulation (Pfeifer et al. 1991).11  

Equation (16) will not work well when the underlying random variable Xk is highly 

skewed or kurtotic. In these cases, the CLT approximation may not be accurate for the number 

of trials that Equation (16) says we need to perform.12 In this case, we must rely on the 

Edgeworth expansion (Cramér 1946; Hall 1992), which corrects the CLT for higher underlying 

moments. For the distributions we consider here, this issue primarily affects the lognormal 

distribution and, to a lesser degree, the exponential. In this case, the probability that the MC 

simulation will more accurately estimate kµ  than the discretization method is (see section K6 

for derivation) 

 ( ) ( ) ( ) ( ) ( ) ( )23 5 3 2
; 4 3

1 1 12 1 3 ( ) 10 15 ( )
12 36

k k
k S k kP c x x x x x x x x O S

S
µ µ γ ϕ γ ϕ − − ≤ = Φ − − − + − + +  

,(17) 

where kx Sδ= , as before, and ϕ  is the standard normal pdf. The term 2( )O S −  signifies 

that the remaining terms are at most of order S-2. The terms 
3 3/2 3 2 3/2

3 [( ) ] [( ) ]k k k
k k k km m E X E Xγ µ µ− −= = − −  and 4 2 4 2 2

4 [( ) ] [( ) ] 3k k k
k k k km m E X E Xγ µ µ− −= = − − −  are the 

skewness and kurtosis, respectively. If the skewness and kurtosis are zero (or small), or if S is 

very large, then Equation (17) reduces to Equation (15) and we can use Equation (16) to find the 

equivalent number of samples. On the other hand, if the skewness and kurtosis are non-

negligible then we must numerically solve Equation (17) for S.  

Lerche and Mudford (2005a, b) investigate the number of samples required to estimate 

the mean of several distributions including lognormal and exponential and base their estimates 

                                                 
 
 
11 Pfeifer et. al (1991) determined S-equivalence for matching the mean. They did not consider higher moments or 
use the Edgeworth expansion, as we do here. 
12 The CLT holds under quite general conditions and states that the sum of an infinite number of random variables 
converges in distribution to the normal. However, it does not specify how quickly this convergence will take place. 
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on the CLT. This approximation, while not fully appropriate, should not have induced 

substantial errors in their case because of their focus on estimating only the mean. However, we 

are interested in estimating higher moments and these higher moments (e.g., E[X4]) will induce 

additional skewness and kurtosis and the CLT will fail to work well in these cases. For example, 

for the lognormal distribution that we discuss here, we find that Equation (16) overestimates the 

required number of samples by almost 25%.13 

Table B7 provides the 95% S-equivalences based on Equation (17) for the EPT, GQN, 

ESM, MCS, MRO, and ZDT shortcuts for the uniform U(0, b), normal N(0, σ), triangular T(0, b, 

b/2), exponential E(λ), and lognormal L(μ, 1) distributions. These results hold for any (see 

section K6): 

• Exponential distribution. 

• Uniform distribution bounded by zero on one side, U(0, b). 

• Normal distribution centered at zero, N(0, σ). 

• Symmetric triangular distribution bounded by zero on one side, T(0, b, b/2). 

• Lognormal distribution with unit variance (of ln X), L(μ, 1). 

While the results in Table B7 do not hold for all possible distributions within a given 

family, they should give the reader a sense for the magnitude of MC samples that are required 

to match a particular discretization.  

These results are striking. First, setting aside the fact that all the approximations we 

consider perfectly match the mean of symmetric distributions (U, N, T(a, b, b/2)), most of the 

shortcuts are equivalent to thousands, if not, tens of thousands of MC samples. For example, it 

would take 57,469 MC samples to have a 95% chance of estimating the second raw moment of 

an exponential with more accuracy than EPT, which Pearson and Tukey did not even suggest 

using to estimate any moment beyond the mean. Second, EPT and GQN are clearly dominant, 
                                                 
 
 
13 In the case of the lognormal, negative values are not possible. This causes Equation (16), which is based on the 
CLT and assumes the distribution of the mean is normally distributed, to require more samples so as to reduce the 
variance of the mean enough such that negative values are very unlikely—at least less than (1 – 0.95) / 2 = 2.5%. 
The Edgeworth expansion performs better by taking the kurtosis and the skewness into account. These normalized 
central moments are very large in the case of the lognormal—especially we when we are considering the distribution 
of X3 and X4. 
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having larger S-equivalences than the other approximations. These approximations do very 

well on everything except the third moment of uniform distributions. Consider estimating the 

mean of lognormal distribution: EPT and GQN are equivalent to almost 12 and 65 times more 

samples, respectively, than ESM (29,499 or 161,943 compared to 2,495). Third, these results serve 

to emphasize our earlier conclusion that the performance of ESM and MCS is quite poor in 

some cases. For example, ESM and MCS are only equivalent to 941 and 676 MC samples, 

respectively, in terms of estimating the second moment of the L(μ,1) distribution.14 While the 

direction of this result is not surprising, given that we know these methods underestimate 

variance, its magnitude is shocking. Use of ESM to model the uncertainty of a lognormal 

distribution, which occurs whenever it is applied to estimations of oil or gas reserves, is 

equivalent to running less than 1000 MC trials! 

A large S-equivalence is a result of two possible factors: (1) high accuracy of the 

discretization method and (2) the difficulty of simulating the underlying random variable. As a 

case in point, consider the EPT and GQN approximations of the lognormal distribution. The S-

equivalences for estimating the mean are large because the discretizations estimate the mean 

closely. The S-equivalences for the third moment are large because approximating the third 

moment of a lognormal distribution via MC simulation is very difficult, requiring many tens of 

thousands of MC samples. Given the large number of samples that are required in most cases, 

we see that discretization is a viable, and in some cases preferable, alternative to MC 

simulation.15  

L.4 Does Discretization Matter? 
“New”16 methodologies are often resisted on the grounds that they will not obviously 

make a material difference. While we do not have space to fully address this issue here, we note 

                                                 
 
 
14 The discretization shortcuts do not provide unbiased estimates of the underlying moments. We do not address the 
issue of bias here. Rather, we assume that over- and under-estimates of the moments are equally costly. 
15 Of course, we are interested in preserving the moments of the output (e.g., NPV), which might be a function of 
many input uncertainties and several downstream decisions. We do not address this more complicated issue here. 
16 We place “new” in quotes because Person-Tukey predates Swanson-Megill by almost a decade and Gaussian 
quadrature predates all other methods by at least a century. 
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that most of the methods presented in this paper are no more complicated than existing 

approximations, but are more accurate. For example: 

• EPT and GQN are a three-point approximations, like ESM and MCS, but are more 

accurate across a range of distributions.  

• The approximations given in Tables K3 through K5 are three-point approximations that 

match the first three moments of the listed distributions—again, exceeding the 

performance of ESM and MCS. 

• The four-point approximations given in Table B6 match the mean and variance of 

lognormal distributions, resulting in better performance than the three-point ESM and 

MCS shortcuts. 

• The log-SM method that we outline will perfectly match the all the moments of the 

lognormal and is only slightly more complex than SM. 

• Other methods that we discuss, such as moment matching for distributions not listed in 

Tables K4 through K7, are more complex than current practice. However, this increase in 

complexity will increase the accuracy of the results (much in the same way that 3-

dimensional reservoir simulation is more complex, but more accurate, than 2-

dimensional simulation). 

However, we realize that some will require convincing before changing their practice. 

To address this, we offer the following, necessarily simple, example. 

L.4.1 Illustrative Example.  
Suppose an oil company is considering the purchase of a prospect that contains an 

uncertain volume of oil. For the sake of argument, suppose the reserves are believed to be 

lognormally distributed with a mean of 90 MMBOE and a standard deviation of 118 MMBOE. 

These parameters correspond to a standard deviation for log-reserves of 1.0 and, thus, we can 

make use of the 4-point approximation given in Table B6. To illustrate the accuracy of each 

approximation method, we will consider three different valuation scenarios. In the first, the 

company believes, based on market transactions (Howard and Harp, Jr., 2009), that proved 

reserves in this geographic location and depositional environment are worth $5 per BOE. This 

case is labeled “Linear” in Figure B5. We also consider a case where the value function is convex 
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and another that is concave. The concave case could correspond to a situation where the host 

government takes a small share of small fields to increase the probability of development, but 

will take a proportionally larger share as field size increases. The convex case might represent 

large initial fixed costs, perhaps for infrastructure, that do not scale in proportion to field size. 

Whatever the case may be, the important point, as far as the example is concerned, is that 

discretization accuracy depends upon the shape of the value function.  

We next apply the discretization methods discussed in this paper to the reserves 

distribution and compute the expected NPV of the prospect. For the bracket median and 

bracket mean discretizations, we consider 3- and 4-point approximations with weightings of 25-

50-25 and 10-40-40-10, respectively. We compare the approximate value from each 

discretization to the “exact” value, which we obtain via 100,000 Monte Carlo samples. The error 

for each approximation is presented in Table B8.  

The errors in the linear case are simply the errors of each discretization in estimating 

mean reserves. We see that the 4-point lognormal approximation, EPT, GQN, and the bracket 

mean approaches estimate the expected NPV to within 1%. The other methods underestimate 

the mean by at least 5%; the bracket median approach is especially poor. Errors in the concave 

and convex cases differ from the linear case because in these situations the variance (and other 

moments) of the input distribution is important. Since most of discretization methods 

misestimate the variance, they will misestimate the expected value of the output (NPV). The 

errors are less in the concave case because the concavity of the value function serves to reduce 

impact of misestimating the variance of the input distribution. In the convex case, we see that 

the 4-point lognormal and the 4-point bracket mean perform very well. Table B9 presents the 

error in the variance of NPV. In this case, we see that all the approximations underestimate the 

output variance. The performance of ESM, MCS, and the bracket median approaches are 

especially poor. While the 4-point lognormal and the 4-point bracket mean discretizations are 

significantly better. Of course, the 4-point lognormal and the bracket mean approximations 

have been specifically tailored to the underlying distribution, which demonstrates the 

importance of this practice. 
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Is underestimating the mean by 10% and the variance by 50% a problem? Clearly, if the 

company is setting a purchase (or sale) price, underestimating the value of the prospect by 10% 

could undermine the opportunity. This would be especially true in a competitive situation, such 

as bidding. In addition, the optimal bid amount depends critically upon the company’s estimate 

of uncertainty. Underestimating the variance by 50-80% may increase the probability of 

overpaying for the property. Thus, we see that discretization matters and could have a material 

impact on decision making. In what other part of the business would misestimating key 

performance metrics by 10-80% be acceptable? 

L.5 Conclusion: Recommendations and Discussion 
We conclude with a set of recommendations and observations regarding the oil and gas 

industry’s approach to probabilistic modeling. 

L.5.1 Recommendations.  
If one is interested in estimating the moments of an output distribution, then closely 

matching the moments of the input distributions is a necessary requirement. In this case, the 

best discretization methods presented in this paper are very accurate, matching 2N moments 

(including the zeroth) with only N points. They could therefore be used instead of Monte Carlo 

simulation, at least early in an analysis, to quantify uncertainty with only a few evaluations of 

the output function. The primary recommendations that follow from our work are: 

• For maximum accuracy, we should use moment matching and apply it directly to each 

input distribution. For several distribution families, the appropriate weights and 

values have already been calculated (see Table B1 and Tables K3 through K7). In other 

cases, the quadrature could be calculated on a case-by-case basis using methods 

detailed in Stroud and Secrest (1966), Miller and Rice (1983), Smith (1993), or Davis 

and Rabinowitz (1984), for example. 

• If moment matching is too difficult to implement or communicate then the Equal 

Areas approach is not an unreasonable alternative. However, one must bear in mind 

that this approach will tend to underestimate the variance (and other higher 

moments). 
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• If one wishes to fix the values at the P90, P50, P10 or weights at 25-50-25 or 30-40-30 for 

communication, assessment, or computational reasons, then using the moment 

matching discretizations in Tables K3 through K5 will result in maximum accuracy.  

• When dealing with lognormal distributions, work with the log of the random variable, 

which translates it to a normal random variable. Then apply the discretization 

methods to the transformed variable. 

• Swanson’s Mean (or ESM), the McNamee-Celona shortcut, and ZDT should not be 

used as part of a final analysis (recall McNamee and Celona explicitly warned against 

using their shortcut in this way). Direct application of ESM to lognormal variables, as 

is common, to estimate their moments (mean, variance, etc.), should be considered an 

unacceptable professional practice. 

• Well chosen discrete approximations are equivalent to tens of thousands of MC 

samples. This argues for greater use of discretization methods. 

L.5.2 Discussion and Conclusion.  
Despite attempts to justify it (Hurst et al. 2000; Rose 2001, Appendix A), Swanson’s 

Mean has no theoretic justification for use with any distribution other than normal (direct use 

with the lognormal is especially error prone). Megill noted its problems nearly 40 years ago. 

Why would we expect MCS or ESM/SM (or the other shortcuts), which are symmetric, to 

preserve the mean of skewed distributions?17 Why have we institutionalized a method known 

to be biased? Megill’s answer was that Swanson’s Mean offers “protection” from uncertainty 

since its estimates are known to be biased low (Megill 1984, p. 188). This is in much the same 

spirit as using a high discount rate or a low oil price to account for uncertainty. We do not 

support such adjustments; decision makers should be provided with unbiased estimates of the 

risks facing the company. 

Another explanation for the acceptance of Swanson’s Mean is the industry’s focus on the 

mean and “risking” a prospect (Bickel and Bratvold 2008), to the exclusion of other moments. 

                                                 
 
 
17 Some analysts have told us that MCS (25-50-25) is good for symmetric distributions, but that ESM (30-40-30) 
should be used when the distribution is skewed! 
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Paraphrasing Steven Jay Gould, “the mean is not the message” (Gould 1985). Risking a prospect 

does nothing to either understand the risk or to help manage it. It simply implies that the mean, 

the probability weighted average, was calculated. Decision makers are not indifferent to all 

projects with the same mean. Rather, they want to understand the surrounding uncertainty and 

the risk. Furthermore, as demonstrated by Equation (5) and illustrated in the previous section, 

one may not accurately determine the mean of an output distribution without accurately 

representing the mean and higher moments of the input distributions. 

Why do we continue to use ESM when more accurate alternatives exist? Why do we 

spend millions of dollars on reservoir simulation models and then represent the output of those 

models in a decision tree with simplistic discretizations? Perhaps it is simply a matter of 

tradition and path dependence: “We’ve always done it this way”, “That’s the way everybody 

else does it”, or “That’s the way I was taught.” In fact, some companies mandate that either 

McNamee-Celona or Extended Swanson-Megill must be used in project valuations. We hope 

that our paper will encourage improved practice. 

L.6 Derivations 

L.6.1 Probability the MC Simulation will be more Accurate than the Approximation 
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L.6.2 S-Equivalence for CLT 
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L.6.3 Edgeworth Expansion 
The first three terms of the Edgeworth expansion are 

 

( )
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where, rκ  is the r-th cumulant. 2κ  is the variance. 1κ  is the mean. 

( )jΦ is the j-th derivative of ( )jΦ . Thus, ( ) ( 1)j jϕ −Φ = , where ϕ  is the standard normal pdf. 

The j-th derivative of the standard normal pdf is ( )( ) 1 ( ) ( )jj
jH x xϕ ϕ= − , where ( )jH x  is the 

Hermite polynomial of order j. Thus, ( ) 1( ) ( 1)
11 ( ) ( )jj j

jH x xϕ ϕ−−
−Φ = = − . The Hermite polynomials 

are an even (odd) function when j - 1 is even (odd). Thus, we have 
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In the discretization work, we are looking at the probability of being within the interval 

[-x , x]. Which is FS(x) – FS(-x). Since Hj is even when j is even and ( )xϕ  is an odd function, the 

terms of order S-j/2 will cancel in the subtraction when j is odd and we will be left with 
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where 3γ  is the skewness and 4γ  is the kurtosis. The third and fifth Hermite polynomials are 

3
3 ( ) 3H x x x= −  and 5 3

5 ( ) 10 15 .H x x x x= − +

 

Substituting these values into the above yields Equation 

(17).

 

L.6.4 Exponential S-Equivalence 
The inverse cdf for the exponential is 1 1( ) ln(1 )i iF α λ α− −= − − . The approximate moment for 

approximation A is then 

 ( ) ( )1
1 1

ˆ ln(1 ) ln(1 )
k kN NA A k A A

k i i i ii i
p pµ λ α λ α− −

= =
= − − = − −∑ ∑ . 
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The k-th raw moment of the exponential is  

( 1)k
k kµ λ−= − Γ + . 

The variance of the k-th raw moment is  

( )2 2 2(2 1) ( 1)k
k k kσ λ−= − Γ + −Γ + . 

Thus, we then have 
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We see that δ is independent of λ and the S-equivalences that we list in Table B7 hold for 

any exponential pdf. 

L.6.5 Uniform S-Equivalence 
The inverse cdf for the uniform is 1( ) ( )i iF a b aα α− = + − . The approximate k-th raw moment for 

approximation A is then 
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If a = 0 then we have 
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and we see that δ is independent of b and the S-equivalences that we list in Table B7 hold for 

any U(0,b). If a is nonzero then S-equivalences will differ from those shown in Table B7. 
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L.6.6 Normal S-Equivalence 
The inverse cdf for the normal is 1 1( ) ( )i iF α µ σ α− −= + Φ . The approximate k-th raw moment for 

approximation A is then 

 ( )1
1

ˆ ( )
kN A A

k i ii
pµ µ σ α−

=
= + Φ∑ . 

In the case of the normal, the raw moments are quite complex and we restrict our 

attention to the case where µ = 0. In this case, the true k-th raw moment of the normal is  
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Similarly, the variance of the k-th raw moment is 
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and see that δ is independent of σ and the S-equivalences that we list in Table B7 hold for any 

N(0, σ). 

L.6.7 Triangular S-Equivalence 
The inverse cdf for the triangular is  
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The approximate k-th raw moment for approximation A is then 
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c
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where Nc is the approximation point i at which F(c) = αi.  

The raw moments are complex in the case of the triangular and we restrict our attention 

to the case where a = 0. Writing c as a fraction z of b, the approximate k-th raw moment is then 

 ( ) ( )1 1
1

ˆ 1 (1 )(1 )c

c

k kN Nk A A
k i i i ii i N

b p z p zµ α α− −
= =

 = + − − − 
 
∑ ∑ . 

The true k-th raw moment is  
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and we see that δ is independent of b and the S-equivalences that we list in Table B7 

hold for any T(0, b, b/2). 

L.6.8 Lognormal S-Equivalence 
The inverse cdf for the lognormal is 1 1( ) [ ( )]i iF Expα µ σ α− −= + Φ . The approximate k-th raw 

moment for approximation A is then 
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= =
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The true k-th raw moment of the lognormal is  

2 21
2k Exp k kµ µ σ = +   . 

The variance of the k-th raw moment is 

( )2 2 2 2 22 1k Exp k k Exp kσ µ σ σ   = + −    . 
Thus, we have 

 
( )

2 2 1
1

2 2 2 2

1 [ ( )]ˆ 2

1

N A A
i ii

k k
k

k

Exp k p Exp k

Exp k Exp k

σ σ α
µ µ

δ
σ σ σ

−
=

  − Φ −  = =
    −   

∑
, 

and we see that δ is independent of μ and the S-equivalences that we list in Table B7 

hold for any L(μ, 1). 
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L.8 Tables 
Table B1: Two-, Three-, and Four-Point Gaussian Quadrature Formulae for Common Distributions 

Distribution  Two 
Points 

 Three 
Points 

 Four 
Points 

  pi αi  pi αi  pi αi 
Uniform  0.500 78.9  0.278 88.7  0.174 93.1 
f (x) = 1  0.500 21.1  0.444 50.0  0.326 67.0 
0 ≤ x ≤ 1     0.278 11.3  0.326 33.0 
        0.174 6.9 
          
Normal  0.500 84.1  0.167 95.8  0.046 99.0 

π= −1/2 21
2( ) (2 ) [ ]f x Exp x   0.500 15.9  0.667 50.0  0.454 77.1 

-∞ ≤ x ≤ ∞     0.167 4.2  0.454 22.9 
        0.046 1.0 
          
Exponential  0.854 55.7  0.711 66.0  0.603 96.8 

= −( ) [ ]f x Exp x   0.146 3.3  0.279 10.1  0.357 17.5 
x ≥ 0     0.010 0.2  0.039 1.1 
        0.001 0.01 

 
Table B2: Three-Point Discretization Shortcuts 

EPT  MCS ESM  MRO  GQN ZDT  
pi αi  pi αi pi αi  pi αi  pi αi pi αi  

.185 5.0 
 

.250 0.0 .300 0.0 
 

.248 1.5  
 

.167 5.8  .333 9.0 
 

.630 0.0 
 

.500 0.0 .400 0.0 
 

.504 0.0 
 

.667 0.0 .333 0.0 
 

.185 .0 
 

.250 0.0 .300 0.0 
 

.248 .5 
 

.167 .2 .333 1.0 
 

 
Table B3: Three-Point Moment Matching Weights for P90, P50, P10 Values 

Uniform Normal Exp. Triangular* 

0.260 0.304 0.465 0.273 
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0.480 0.392 0.175 0.454 
0.260 0.304 0.360 0.273 

* Note: Triangular discretization is a function of c, but this relationship is weak enough to ignore. 

 
 
 
Table B4: Three-Point Moment Matching Values for 25-50-25 Weights (same pdfs as Table 3) 

Uniform Normal Exp. Triangular 

    P75.0 P92.1 P93.3 P78.9 
P62.1 P50.0 P44.6 P50.0 
P0.9 P7.9 P11.2 P21.1 

 
Table B5: Three-Point Moment Matching Values for 30-40-30 Weights (same pdfs as Table 3) 

Uniform Normal Exp. Triangular 

    P74.9 P90.2 P91.8 P76.4 
P64.0 P50.0 P42.3 P50.0 
P6.5 P9.8 P9.5 P23.6 

 
Table B6: Representative Four-Point Discretizations for Lognormal 
σ = .25  σ = .50  σ = .75  σ = 1.0 

γ3 = 0.78  γ3 = 1.75  γ3 = 3.26  γ3 = 6.18 
pi αi  pi αi  pi αi  pi αi 

.203 0.0 
 

.151 0.0 
 

.186 0.0 
 

.436 0.0  

.288 9.9 
 

.265 9.1 
 

.235 7.3 
 

.274 4.1 

.303 0.0 
 

.378 0.0 
 

.357 0.0 
 

.017 0.0 

.206 .0 
 

.206 .0 
 

.222 .0 
 

.272 .0 
 

Table B7: 95% S-Equivalences for Discretization Shortcuts 
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148 

Table B8: Approximation Error in Mean for Illustrative Example 

 
 

Table B9: Approximation Error in Variance for Illustrative Example 
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Figure B1– Gaussian quadrature for the normal distribution. 

 

 
Figure B2 – Illustration of Equal Areas discretization method. 
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Figure B3: Error in Swanson’s Mean with direct application to lognormal distribution. Compare to Megill (1984, 

Fig. B.1) 
 

 
Figure B4: Example of decision situation that may not lend itself well to Monte Carlo methods. 
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M APPENDIX C: DISCRETIZATION AND THE VALUE OF 
INFORMATION 

 

Most decision and risk analyses include a mixture of continuous (e.g., oil and place, 

porosity, oil price) and discrete uncertainties (e.g., geologic success). How to best represent 

these uncertainties in decision models is a continuing question along multiple dimensions. 

From a communication perspective, continuous uncertainties complicate the discussion of 

particular scenarios that facilitate understanding. For example, it is unclear how to represent 

continuous uncertainties in a decision tree. From a computational perspective, continuous 

uncertainties may require many more calculations or model runs (they still must ultimately be 

discretized into many points to allow for computation). Yet, this complexity is believed to result 

in greater accuracy.  

Bickel et al. (2011) recently summarized the most common discretization methodologies 

and demonstrated that some methods commonly used within the oil and gas industry are 

inaccurate. Bickel et al. focused on matching the moments (e.g., mean, variance, skewness) of 

input uncertainties, with the goal of more accurately estimating moments of the output 

distribution (e.g., expected net present value). In this paper, we extend Bickel et al. by 

investigating the accuracy of discretization techniques within the context of an information 

gathering example.  

Our interest in this problem was motivated by Arild et al. (2008), who compared the use 

of one particular discretization (Extended Swanson-Megill) to Monte Carlo (MC) simulation 

within the context of a value-of-information (VOI) problem. They demonstrated that these two 

methods produced different results and implicitly assumed MC was more accurate. Prange et 

al. (2009) compared a numerical approximation method to a discretization method and also 

found that the discretization was inaccurate. Thus, Arild et al. and Prange et al. suggested the 

use of MC simulation instead of discretization. Willigers (2009), on the other hand, recommends 

the use of discretization instead of MC in an effort to reduce the number of computations and 

speed the analysis of asset portfolios. 
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This appendix is organized as follows. In the next section, we review three commonly 

used discretization methods. In the third section, we introduce an illustrative example that we 

use throughout the paper. In the fourth section, we derive exact and approximate VOI formulas 

for our illustrative example. In the fifth section, quantify and discuss the accuracy of the 

discretization methods. We next compare discretization to MC simulation. Finally, in the 

seventh section we conclude. 

M.1 Discretization Methods 
Several discretization methods are in common use. These include general methods such 

as “Equal Areas” and shortcuts such as Extended Swanson-Megill. In this paper, we focus only 

upon commonly used shortcuts and summarize them below. The interested reader should see 

Bickel et al. (2011) for a more detailed discussion of these methods and others.  

Pearson and Tukey (1965) developed a three-point discretization to closely approximate 

the mean of common probability density functions (pdfs). Their three-point approximation of 

the mean weights the 95th (P95), 50th (P50), and the 5th (P5) percentiles of the excess distribution 

function (edf) with probabilities of 0.185, 0.630, and 0.185, respectively. Pearson and Tukey did 

not recommend this approximation for higher moments and instead provided a more complex 

approximation for the standard deviation. However, Keefer and Bodily (1983), based on work 

by Keefer and Pollock (1980) and their own analysis, suggested treating the Pearson-Tukey 

approximation as a complete probability mass function (pmf) and referred to this as “Extended 

Pearson-Tukey” (EPT). 

In the late 1960s, the Stanford Research Institute and later Strategic Decisions Group 

(SDG) popularized the practice of weighting the P90, P50, and P10 by 0.25, 0.50, and 0.25, 

respectively. This shortcut is described in McNamee and Celona (1990, pp. 32-33) and has come 

to be known as the “McNamee and Celona” shortcut or MCS.  

Roy Swanson, an Exxon geologist, proposed, in a 1972 internal memo, approximating 

mean reserves, by weighting the P90, P50, P10 of the reserves edf by 0.30, 0.40, 0.30 (Megill 1984, 

Appendix B;Hurst et al. 2000). Following the discussion above, we will refer to this as a 30-40-30 
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weighting. Keefer and Bodily (1983) proposed treating Swanson’s 30-40-30 rule as a complete 

pmf and referred to it as “Extended Swanson-Megill” (ESM).  

We summarize each of the discretization shortcuts in Table C1. 

 
Table C1: Three-Point Discretization Shortcuts 

EPT  MCS ESM 
Probability Fractile  Probability Fractile Probability Fractile 

0.185 P95  0.250 P90 0.300 P90 
0.630 P50  0.500 P50 0.400 P50 
0.185 P5  0.250 P10 0.300 P10 

 

M.1.1 Illustrative Example 
Throughout this appendix, we test the accuracy of the differing discretization methods 

using a simple example. 

Suppose a risk-neutral oil company is considering drilling a well in an undeveloped 

area. Based on core samples and well logs, the company estimates that the net present value 

(NPV) of the well is normally distributed with a mean μ of $10 million and a standard deviation 

σ of $20 million. Evaluating the standard normal cumulative at a value of 0.5 ($10/$20), the 

company finds that the probability of the well being a good investment (NPV > $0) is 69%. If the 

company does not drill, it will earn a sure v = $0.  

In an effort to improve its decision, the company is considering the acquisition of a 

seismic survey. Modeling the value of seismic surveys is complicated and time consuming 

(Pickering and Bickel 2006;Bickel et al. 2008). However, based on previous results in similar 

areas, the company's geologist believes the seismic results are correlated with the true value of 

the well with a correlation coefficient ρ of 0.6. 

The structure of the example we consider here is known as a “two-action problem with 

normal priors” (TALL-N). As we will see below, the advantage of this simple example is that 

the VOI can be written in closed form and calculated exactly. This will allow us to compare the 

discrete approximations to a true value. 
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M.1.2 Value of Information 
Exact Solution. Define ( ) /c vµ σ= − , which is a measure of the distance or divergence between 

the two alternatives in the TALL-N problem, measured in units of standard deviation. Bickel 

(2008) has shown that the expected value of information (EVOI) with a correlation coefficient of 

ρ in the TALL-N problem is 

 

 
( ) ( )
( ) ( )

1 1 1

1 1 1 ,

c c c v
EVOI

c c c v
ρ

ρσ φ ρ ρ ρ µ

ρσ φ ρ ρ ρ µ

− − −

− − −

  − Φ − ≥  = 
 + Φ <  

 (18) 

 
where ø and Φ are the standard normal pdf and cumulative distribution function (cdf), 

respectively.  

Applying this formula to our example, with c = ($10 – $0) / $20 = 0.5, we find that the 

value of perfect information (EVOI1) is $3.96 million and the value of imperfect information 

with a correlation coefficient of 0.6 is $1.36 million. It might be surprising that the value of test 

with a correlation coefficient of 0.6 is only worth about 34% of perfect information, rather than 

60%. This result is typical. The value of an imperfect test is generally much less than ρ times the 

value of perfect information. In fact, as can be seen here, ρ2 times EVOI1 is a better estimate. See 

Bickel (2008) for a full discussion of these issues. 

The EVOI of obtained via Equation (1) is the mean or the expectation of a distribution 

that describes the uncertainty in the VOI. The variance of the VOI with correlation coefficient ρ 

when vµ ≥  is (see section L4 for the derivation) 

 ( ) ( ) ( )( )2
2 2 2 2 1 1 2 2 1 1 1( 2 ) ( ) ( )VVOI v v c v c c c cρ µ µ ρ σ ρ ρσ µ φ ρ ρ σ ρσ φ ρ ρ ρ− − − − − = − + − Φ − − − − + − − Φ −  .(19) 

 
This formula will be useful later in the paper. The case where vµ <  can be derived 

similarly and is omitted in the interest of space. 

Discrete Approximation. We now derive a formula to calculate the EVOI under each of the 

approximations described above. We then compare these values to the exact value provided by 

Equation (1). We use the following additional notation: 
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• Θ. A random variable that represents the signal provided by our test (e.g., the seismic 
amplitude). 

• θ. A particular realization of Θ.  
• X. Random variable for the reservoir property of interest (e.g., porosity). 
• x. A particular realization of X.  
• µ . Mean of X. 
• σ . Standard deviation of X. 
• ρ. Correlation between X and Θ. 
• iα . A fractile of a random variable. 
• ( )A A

i iθ θ α≡ . The iα  fractile of the random variable Θ, under approximation A. 
• A

ip . The weight placed on fractile iα  under approximation A. 
• N. The number of points in our discrete approximation. 
 
Given that X and Θ are jointly normally distributed, the exact conditional mean of X 

given signal A
iθ  is 

 
 1( ).A

i

A
iθ

µ µ ρσ θ−≡ + Φ  (20) 

 
Since the approximations we consider are symmetric about the P50, the approximate 

mean, conditional on observing A
iθ  under approximation A, is 

 
 1( ).A

i

A A
i ix

θ
µ µ ρσ θ−= ≡ + Φ  (21) 

 
The approximate EVOI under approximation A is the expected value with information 

less the expected value without information (Bratvold et al. 2009):18 
 

 [ ]
1

max , max , .
N

A A A
i i

i
EVOI p x v vρ µ

=

 = − ∑  (22) 

 
The derivation of this formula is given graphically in Figure C1. 
 

                                                 
 
 
18 This definition of VOI is correct only if the decision maker is risk neutral or has constant risk attitude. 



156 

 
Figure C1: Decision tree used to value information under three-point discrete approximation. 

In this paper, we consider only three-point approximations (N = 3). We define 1
Aθ  as the 

smallest fractile, 2
Aθ  as the P50, and 3 11 .A Aθ θ= −  Equation (5) then becomes 

 

 
( )1 1

1 1 1

1
1

( ) ( )

0 ( ).

A A A

A

A

cp c
EVOI

cρ

σ ρ θ θ
ρ

θ
ρ

− −

−

 − Φ − < −Φ= 
 > −Φ


 (23) 

 
The ratio of the approximate to the exact VOI is then 

 

 

( )
( )

1 1
1 1 1

11 1 1

1
1

( )
( )

( )

0 ( ).

A A
A

A

A

p c c
EVOI c c c
EVOI c

ρ

ρ

θ ρ
θ

ρϕ ρ ρ ρ

θ
ρ

− −
−

− − −

−

 −Φ −
 < −Φ
 − Φ −= 


> −Φ


 (24) 

 
Thus, the ratio of the approximate EVOI to the exact EVOI is independent of the scale of 

the decision problem, as specified by µ or σ. That is, this ratio depends only upon the accuracy 

of the test ρ and the divergence between the two alternatives c. As we will see, this result is 

quite helpful since it will allow us to quantify the accuracy of various discretization methods 

across a wide range of model parameters. 

M.2 Accuracy of Discretization Methods 
We now use Equations (6) and (7) to compare the accuracy of the discrete 

approximations to the exact EVOI given in Equation (1). We begin by applying them to our 

illustrative example. Recall, that in this case μ = $10 million and σ = $20 million and, thus, c = 0.5. 

1
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2
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3
Ap

3
Aθ

2
Aθ

1
Aθ

( )1A A
i ix μ ρσ θ−= + Φ
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When ρ equals 0.6 the EVOI for the EPT, ESM, and MCS approximations are $1.80, $1.61, and 

$1.34 million, respectively. Clearly, the approximations can produce very different VOI 

estimates. For example, the EPT and MCS approximations differ by over 34%. Whether or not 

these differences will lead to differing recommendations regarding information gathering (i.e., 

the differences are material) will depend upon the cost of the test. For example, if the cost of the 

test was $1.5 million, both EPT and ESM would recommend gathering the information, while 

MCS would not. As discussed above, the exact EVOI (based on Equation (1)) is $1.36 million. 

Thus, the ratio of the approximate to the exact EVOI for the EPT, ESM, and MCS 

approximations are 1.33, 1.19, and 0.99, respectively. 

The EVOI as a function of the correlation coefficient is plotted in Figure C2. The solid 

black line is the exact EVOI. While the EVOI is small for low correlations, it is exactly zero only 

when the correlation is zero. When ρ = 1, perfect information, the EVOI equals $3.96 million, as 

we found above. The remaining curves are the approximate EVOI for the EPT (squares), ESM 

(triangles), and MCS (circles) approximations. In this case, MCS produces EVOI’s very close to 

the true EVOI for correlations above about 0.55. EPT and ESM tend to overestimate EVOI to 

varying degrees. On the low end, the approximations have differing thresholds below which 

EVOI is estimated to be zero. This threshold correlation *ρ  
 
is given by Equation (7) and equals 

* 1
1/ ( )Acρ θ−= − Φ . In the case of ESM and MCS, * 10.5 / (0.1) 0.39ρ −= − Φ ≈ . The EPT threshold is 

* 10.5 / (0.05) 0.30ρ −= − Φ ≈ .  

 

 
Figure C2: Comparison of approximate EVOIs to exact EVOI (μ = $10 million and σ = $20 million). 
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Figure C3 plots the ratio of the approximate EVOI to the exact EVOI (Equation (7)) for c 

= 0.5 As Equation (7) makes clear, these results hold for any jointly normal setting for which the 

c = 0.5. The best approximation depends upon the correlation. We conjecture that most tests 

considered in actual situations have correlations above 0.6. Tests with accuracies less than this 

are likely to be screened out before making it to market. Thus, MCS performs very well, in this 

case, over most of the range one might expect to find in practice. 

 

 
Figure C3: Ratio of approximate to exact EVOI (c = 0.5).  

 
Figure C4 tests the sensitivity of these results by considering two different values for c: 

0.25 (panel a) and 0.75 (panel b). As c increases, EVOI decreases, and the region in which the 

approximations estimate a positive EVOI also decreases. Overall, the discretization errors are on 

the order of +/- 20%. They are, of course, larger than this in some cases and smaller in others. 

Which approximation is best depends upon the setting, but MCS appears to perform well over a 

wide range. 
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a

  
b

  

Figure C4: Sensitivity of the ratio of the approximate to exact EVOI to c. c = 0.25 (panel a) and c = 0.75 (panel b).  
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M.2.2 Discretization Accuracy 
Let k be the difference between the approximate EVOI obtained via a discretization and 

the true EVOI. It will be useful to normalize this difference by the standard deviation of the 

VOI, which may be obtained via Equation (2). We write the accuracy of the approximation as 

 

 
AEVOI EVOIk

VVOI VVOI
ρ ρ

ρ ρ

δ
−

= = . (25) 

 
Simulation Procedure. Now, suppose that instead of using a discretization, we estimate EVOI via 

MC simulation. We accomplish this by simulating the signal Θ, which is assumed to normal; we 

assume it is standard normal without loss of generality. We then follow this procedure (Bickel 

et al. 2008): 

 
1. Sample a signal θ from ~ (0,1)NΘ . 
2. Compute the posterior mean θµ  

via Equation (3).  
3. Choose the maximum of θµ  and v. Return to Step 1. 

 
We repeat this procedure S times. The average of the S trials is an estimate of the true 

EVOI, which we denote SEVOIρ . Each time we perform a MC trial we will estimate a different 

SEVOIρ . In other words, our estimate of the EVOI via MC simulation is a random variable. 

 
Computing S-Equivalence. According to the Central Limit Theorem (CLT), SEVOIρ  is normally 

distributed with mean EVOIρ  and variance /VVOI Sρ  for large S. Thus, the probability that the 

simulation will more accurately estimate EVOI than the discretization method is (see Appendix 

for derivation) 

 ( ) ( )2 1,SP EVOI EVOI k Sρ ρ δ− ≤ = Φ −  (26) 

 
where Φ is the standard normal cdf. If we want this probability to be τ then we must take  

 

 
2

2 1 1
2

S τδ − − + = Φ  
 

 (27) 
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samples (see section L4 for derivation). For example, if we want the simulation to have a 95% 

chance of estimating the EVOI more accurately than discretization we must take 

( )22 1 2 21.95 / 2 (1.96 / ) 4 /S δ δ δ− −= Φ ≈ ≈  samples. Thus, Equation (10) establishes an equivalence 

between discretization and simulation (Pfeifer et al. 1991).  

 
Illustrative Example. Returning to our illustrative example, we compute δ and the equivalent 

number of MC samples, assuming that c = 0.5 and ρ = 0.6. These results are presented in Table 

C2. In this case, EPT, ESM, and MCS are equivalent to 1,956, 5,923, and 1,696,499 samples, 

respectively. Thus, we see that even simple three-point approximations can be equivalent to 

thousands and possibly millions of MC samples. This makes it clear that one should not assume 

that MC is necessarily more accurate than three-point approximation methods. Even the poorly-

performing EPT is equivalent to almost two thousand MC samples. Whether or not one would 

be better off using an approximation or MC depends upon how long it takes to compute the 

model under each MC sample. 

 
Table C2: 95% S-Equivalences for the Illustrative VOI Example (c = 0.5 and ρ = 0.6) 

Approx
imation 

δ  Equivalent Number of 
MC Samples, S 

EPT 0.044 1,956 
ESM 0.025 5,923 
MCS -0.002 1,696,499 

 

Figure C5 plots the equivalent number of samples as a function of the correlation 

coefficient for c = 0.5. Values above 100,000 are omitted to save space. The equivalent number of 

samples is not a simple function of the correlation. This is driven by the fact that neither the 

difference in EVOIs in Equation (8) nor the standard deviation of the VOI (Equation (2)) are 

simple functions of ρ. For correlations above about 0.55 MCS is equivalent to over 100,000 MC 

samples. Large S-equivalences can stem from the fact that the approximate EVOI is close to the 

true EVOI or from a low value for VVOIρ. For example, when ρ = 0 the standard deviation of the 

VOI is zero. EPT and ESM are equivalent to far fewer samples than MCS for correlations above 

0.55. For example, for correlations above 0.7, ESM is equivalent to between 1,500 and 2,500 MC 
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samples. This result is surprising and important, given the oil and gas industry’s heavy use of 

this particular approximation.   

 

 
Figure C5: Equivalent number of Monte Carlo samples (c = 0.5, τ = 0.95). Values above 100,000 are not shown. 
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Figure C6: Sensitivity of the equivalent number of Monte Carlo samples (τ = 0.95) to c. c = 0.25 (panel a) and c = 
0.75 (panel b). Values above 100,000 are not shown. 
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models (e.g., reservoir simulators) the burden of proof is on those using MC 

methods to show that they are more accurate than simple discretization methods. 

Unfortunately, Arild et al. (2008) did not specify the number of MC samples used 

in their analysis. 

 
2. MCS performs well, and in many regions of interest (e.g. correlations above 0.5), 

better than the EPT and ESM discretizations. This has important practical 

implications as the industry relies heavily on ESM. See Bickel et al. (2011) for a 

further discussion of these issues. 

 
The discretizations discussed in this paper are not a function of the underlying decision 

problem. For example, the fractiles used are not a function of the project payoffs. As such, the 

approximations will always induce some error. It is possible to tailor the discretization to the 

underlying decision and this will result in greater accuracy. Arild et al. (2008) provide an 

example of this and Merkhofer (1975;1977) discusses it in detail. 

Other approaches to discretization include graphical methods such as Equal Areas and 

techniques that seek to match the moments of the input uncertainties. How well these methods 

perform within the VOI setting we present here, or more generally, is an open question. We 

hope that this research provides the foundation needed to explore this important area of  

M.4 Derivations 

M.4.1 Variance of VOI 
Suppose we can conduct a test Θ that yields a signal θ regarding the value X. Assume 

further that Θ and X are jointly normally distributed. The marginal pdf of Θ (i.e., the 

preposterior in a Bayesian setting) is 

 

 
2

1
21( )

2
f e

θ µ
σθ

πσ

Θ

Θ

 −
−   

 

Θ

= , (28) 

 
where µΘ  and σΘ  are the prior mean and standard deviation of Θ, respectively. The 

mean of X given a signal θ is 
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 |X X Xθ
θ µ

µ µ ρσ
σ

Θ

Θ

−
= + , (29) 

 
where Xµ  and Xσ  are the prior mean and standard deviation of X, respectively. Notice 

that the conditional mean of X depends upon θ's normalized difference from its mean. Thus, we 

may assume that Θ’s pdf is the standard normal ( µΘ  = 0 and σΘ  = 1). In which case, we have  

 
 θµ µ ρσθ= + , (30) 
 

where we have dropped the X subscripts since there is no possibility of ambiguity. 

Assume 0ρ > . If 0ρ =  then θµ µ=  and VOI = 0. If 0ρ <  the test just needs to be relabeled. The 

conditional mean will be greater than v  as long as vµ ρσθ+ >  or ( )1( ) vθ ρσ µ−> − . Let 

( )1 1( )a v cρσ µ ρ− −= − = −  and b = ∞ . The second raw moment of the VOI is 
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Since 1a cρ−= −  we have 
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The variance of the VOI is then 
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M.4.2 Probability the MC Simulation will be more Accurate than Discrete Approximation 
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M.4.3 S-Equivalence for CLT 
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