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Chemical Engineering and Chemistry
22-Year Collaboration at Georgia Tech

« Jointly Directed Students and Postdoctorals
v'"Chemical Engineers
v'Chemists
v'> 50 PhDs Completed

e >50 Joint Research Grants

e >250 Publications and
Presentations
e 2004 Presidential Green | —
Chemistry Challenge Award ?




Expenditure
Personnel
Equipment
Supplies
Services
Travel
TOTAL
Share %

Funding — $ in Thousands
By Budget Period, DOE and Cost Share

BP1 | BP1 | BP2 | BP2 ||BP3 | BP3 | Total | Total
DOE | Share | DOE | Share ||DOE | Share || DOE | Share
372 | 92 || 417 | 101 || 434 | 87 |1251 | 263
92 62 120 150
30 76 75 228
21 38 38 114
9 9 9 27
524 | 154 | 540 | 221 || 556 | 87

23 29 14




Overall Project Performance Dates

First Year Second Year Third Year
Ql Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PROJECT MANAGEMENT, PLANNING, AND REPORTING
1-COMPONENT SILYL AMINE-
BASED ILS
1-COMPONENT SILYL GUANIIDINE-BASED ILS

THERMODYNAMICS AND RATES OF IL

FORMATION
OPTIMIZE CO, CAPTURE SOLVENT
STRUCTURE
PROCESS DESIGN AND ECONOMIC




Project Participants

e Chemical Engineers and Chemists Supported on this

Grant
v" Faculty — Charles Eckert, Charles Liotta
v" Postdocs — Elizabeth Biddinger, Manish Talreja, Manjusha
Verma
v PhD Students — Olga Dzenis, Ryan Hart, Gregory Marus,
Amy Rohan, Emily Nixon, Amber Rumple
v Undergraduate — Melissa Burlager

 Other Contributors
v" Research Scientist — Pamela Pollet
v PhD Students — Kyle Flack, Jackson Switzer
v Undergraduates — Sean Faltermeier, Paul Nielson, Jessica
Doyle, Ashley Bembry, Poomrapee Jewanarom, Jordan
Donaldson



Project Goal: CO, from Coal-Fired Power Plants

* Long-Term Goal
v Capture 90% of CO, with less than 30% cost increase by 2020

e This Project

v" Systematic Structural Changes to get Solvent with
Optimum Balance of Properties
» Ease of Synthesis
»High Capacity
» Low Viscosity
»Optimum Thermodynamic Properties

v  Optimum Solvent
»Demonstrate Commercial Viability: Process Simulation
e Bottom Line: Superior Process for Post-Combustion
CO, Capture from Coal-Fired Power Plants
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Scientific Background: First Reversible lonic Liquid
(RevIL) — Amidine Absorbs and Releases CO,

 DBU (1,8-diazabicyclo-[5.4.0]-undec-7-ene)
v'Absorbs CO, with Alcohol at Ambient T
v'Releases CO, with Inert Gas Sparge or at Higher T

v"All Done at Ambient Pressure — No High Pressure
v"Many Other Examples

N CO, N
+ ROH = = - RCOj
\ 'COZ \~.
N N
H

Molecular Liquid == lonic Liquid

Jessop, Heldebrant, Li, Eckert, Liotta, Nature 2005, 436, 1102.




RevlLs Proposed in This Work

 Silylamines

» Silylguanidines x

» Synthesis: Poor Yields

» High molecular weight for liquid
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RevILs: Dual Capture Mechanism

Chemisorption

Molecular RS Rev. lonic
L|QU|d ) C02 LlCIUld

Added Capacity By Physisorption

Rev. lonic CO, Swollen

Liquid lonic Liquid




Silylamine Library

Acronym Structure Acronym Structure
TMSA TEtSA
TESA TPSA
CHDMSA THSA
PDMSA FSA
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Sitlylamine Library

Acronym Structure

TMSA

TESA

CHDMSA

PDMSA

Unstable In
ailr and
moisture

Turn Into
solids after
CO, reaction

X
X

11



Silylamine Synthesis

General hydrosilylation reaction to form trialkylsilylatedamines

» Easy One Step Synthesis with High Yields
» Characterization: NMR, FT-IR, Elemental Analysis

» Easily Change Structure by Changing R, & R, 12



Properties: CO, Capture

o~ Absorption Capacity (Chemical and Physical)
» Chemisorption: Equilibrium Constant K(7)

a; _ X1LViL XL YiL K, (T) : FT-IR

Ayr*Acor CHRLE ﬁTﬂ (XCpn¥ame)?

n K. (T) : COSMO-RS
feoz 4

K =

» Physisorption: CQO, solubility in IL: Henry’s Law Constants
H o, (T)

Peoz Heoo (T) t FT-IR
Xco2

Heoo 1L =

Cone and Plate

* Viscosity (pre and post capture) Viscometer 13




Custom Design Sample Cell
for ATR FT-IR

e Custom built in collaboration with Prof. Sergei Kazarian
v" Ease of assembly, operation, and maintenance
v" Low volume, high pressure, high temperature
v In situ measurements
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ATR-FTIR

 Peak area measurements + Beer-Lambert Law

U.)

(A.
=

Absorbance

o Q
o o

Region 1 Region 2 Region 3

©c o ©
N W

_’/—f

I

0 i
3500

-

IL+CO,— ML— TPSAat 25°C

" Region 1 (3100-2600 cml) |
e C-H stretch vibration

* NH,* vibration (IL)
\. J

" Region 2 (2400-2260 cm-1) )
« Asymmetric CO, stretch

3000 2500 2000 1500
Wavenumber (cm1)

Region 1 and 3: Chemisorption
Region 2: Physisorption

1000

. J

4 Region 3 (1740-1520 cm'l)\

* N-H deformation (ML)
» C=0 stretch vibration (IL)

. /
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COSMO-RS
(COnductor-like Screening MOdel for Real Solvents)

Predictive tool for thermodynamic equilibria of fluids
Work Done by Collaborators Outside of this Project

» Quantum chemical calculations: Molecular surface charges

» Extract molecular interaction energies: Electrostatic, vdW, H-

bonding

» Statistical thermodynamics: Calculate thermodynamic

properties: Vapor pressure, boiling point, activity coefficients
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Properties: CO, Release

o Regeneration Energy

meAT + Aern + AHdeSOTptiO?l

m : mass (related to capacity) Ruzicka &

C, : heat capacity of CO, rich solvent | Pomalski method

AT : Treversal — Tcapture (40 °C) } DSC
AH,,y, : Amine-CO, reaction enthalpy

FT-IR

AHgesorption - CO,-IL mixing enthalpy

Refractive Index

* Recyclability
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CO, Release: DSC Analysis

TPSA

0.2
0.0 Reversion onset
' Reaction Enthalpy 179.95°C
63 .10°C 316.2J/
=02 243.7J/g
= ML
= vaporation
E‘U 4 COZ evaporatio
L
= release
[}
T-0.6
-0.8 .
Reversal 226.38°C
_1.0- | ITelzmperzlalturle o611°c |
-100 0 100 200 300 400

Temperature (°C)

DSC: Preformed lonic Liguid @ 5°C/min from -40°C to 400°C
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RESULTS



Capacity Comparison, Experimental vs
Theoretical for Chemisorption Only

4.0 - m Diffuser Tube Gravimetric (Experimental)
- 3.66 = Needle Gravimetric (Experimental)
= 3.9 1 320 & Theoretical Maximum Chemisorption

TEtSA TPSA THSA FSA

> Capacity decreases with higher molecular weight .



Equilibrium Constant

Temperature (K) Equilibrium Constant , K
60 2.8
65 1.6
70 1.0
80 0.3

AH,,,=-104 kJ/mol

0.85 -

d(InK) —AH,,., » o 035
dT  RT? =015
-0.65 -

-1.15 -

0.0028 0.00285 0.0029 0.00295 0.003

= AH,, .= -110 kJ/mol from DSC T (K
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CO, Capture: Henry’s Law Constants

« Henry’s Law constants Heoy (40 °C)  Hegy = Feoz

Xco2
120 -
100 - TE:SA
O _TPSA
o 80 -
=
@ 60 - THSA
- i
- i ®
g FSA
820 -
@)
L 0

100 150 200 250 300 350
V,, (cm3/mol)

> CO, solubility increases with increasing void volume

> Increased CO, solubility in fluorinated compound “



Project Challenge:
Viscosity of lonic Liquids

10500 | ~ ®25C
m40C

Viscosity (cP)

TEtSA TPSA THSA FSA

> Decreases with increasing chain length (packing)

> Increases with fluorination (increased intermolecular
bonding)



Viscosity vs. Extent of Reaction

5000 Region2 —

4000 Y 3

Viscosity (cP)

-
o
o
o

&
Region 1 ® &
o0 *¢ o0 ¢

o0 01 02 03 04 05 06 07 08 09 1.0

o

Conversion

> Viscosity Is a non-linear function of conversion




Potential Management of Viscosity

» Reaction Slightly Less than Complete

» Add Water
v'Always Present, 10-15%

e \Water Also Increases Capacity
v'Forms Bicarbonate in Presence of Amine
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140 -

2

BN
N
o

100 -

oo
o
1

AHrxn KJ/mol of CO
5 3

N
o
1

Reaction Enthalpy

TEtSA

AH,.,,~110 KJ/mol CO,

TPSA THSA FSA

> Not affected by the structural changes studied
> Same reaction (primary amine and CO,)
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>

Reversal Temperature

80 -

60 -
20
10

0

a1 ~
o o
| |

w
o
|

Reversal temperature
(°C)
S

TEtSA TPSA THSA

Decreases with longer chains (entropic effects)
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Dissolution Enthalpy

AH _p ( d(In P) )
dissolution d (I/T) »

0.6 | m-TEtSAIL 35C

=+ TEtSA IL 50C

0.5

0.4
0.3
0.2
0.1

0 20 40 60
Pco. (bar)

CO, Mole Fraction (Xco,)

» Calculated from CO, solubility data in IL (FT-IR)
» Dissolution enthalpy ~ 15 KJ/ mol CO, (14% of AH,.,.,,) 28



Regeneration Energy
meAT + AH,.,, + AI'Idesorption

185 -
180 -

TEtSA TPSA THSA

e e T
o O N
o o1 O o1

Total Regeneration Enthalpy
(KJ/mol CO,)

» Flue Gas Conditions (40 °C ; 1 bar ; 15% CO,)
> Negligible physisorption 29



Kinetics and Mass Transfer

* Reaction instantaneous
« Absorption is mass transfer limited

* All flowrates: excess CO,, yet more agitation, more
absorption

s
o

__ _MixiTuT C_he_miiorEtiq_n EDI-TPEA ________
J ®
=
E’ 2.0 &
. 6" 15 - ‘ *
Graph is >
for TPSA, E ]
o
60 sec, 5 *
25C % 0:5 A
o
&)
0.0 T T J
0 500 1000 1500

30
CO, flowrate (ml/min)



Recyclability of RevlLs (TPSA)

« CO, capture: 1 atm CO, and room temp.
* CO, release: heating at 100°C for 1-1.5hrs

* 5 cycles with consistent behavior

L 1472 lonic Liquid

(¢D)

e

< 1.468

>

= 1.464

(@)

IS

| -

o 1460

nd o

Molecular Liquid

1.456

0 1 2 3 4 5
Cycle



Integrating Experimental Data
Into Process Design

DSC.:

Aern
FTIR: DSC:
K(T) ‘ " ‘ Treversal




HYSYS Simulation

FLASH
FEJ'E—" SEPARATOR SPENT
GAS (F;LA 3 GAS
—— (DRY)
FLASH DUTY QFBE %T(ER
TPSA_MKUP —_
TPSA_ML_IN ABSORBER TPSA_IL_WARMER i
WATER OUT MIXER
HEAT OUT TPSA_IL_IN
(ABSORBER) =
T RICH
0 TPSA_ML_REC R
90% CO, 5
’, TPSA_IL_OUT
captured e ‘ HEAT HEATT!
I (STRIPPER)
TPSA_ML|RECYCLE
COOLER
DUTY
00l FR — -
TPSA_ML_COOLER TPSA_ML_OUT

* Preliminary Estimate for TPSA: 1.4 MJ/kg CO,
* Literature Value for 30% Ag. MEA: 4 MJ/kg CO,



Conclusions

e Developed RevlLs as carbon capture solvents:
v"Minimize water
v'Dual capture mechanism
v'Structure-property relationship based approach

* Physisorption is less energy intensive than
chemisorption

* RevlLs are promising alternatives to ag.
alkanolamines
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Support From DOE Has Generated...

« 5 Articles Published, < 6 Students Have Finished

2 More Submitted v" Vittoria Blasucci, PhD ChBE
» 8 Invited Presentations (Exxon)
Presentations, 3 More (Exponent)
Upcoming v Manish Talreja, Postoc ChBE,
« 7 Collaborations: /(DOW) | |
v 4 Academic Olga Dzenis, MS ChBE (Wink

Engineering)
v Melissa Burlager, BS ChBE
(Grad School)

v Greg Marus, PhD ChBE
(Albemarle)

v 3 Industrial



Project Objectives and Timing: Milestones

Milestone Title Finish Verification Method

A Complete Project 9/30/08 PMP approved by DOE
Management Plan COR

B 1-Comp. Silyl Amine- 06/30/10 Successful Synthesis and
Based ILs Characterization

C 1-Comp. Silyl Guanidine- | 02/28/11 Successful Synthesis and
Based ILs Characterization

D Thermo & Rates of IL 6/30/11 Successful Measurements
Formation

E Optimize CO, Capture 10/31/11 Optimal Solvent Identified
Solvent Structure

F Process Design and 10/31/11 Design and Scaleup
Economic Analysis Completed

G Write Final Report 12/31/11 Final Report Submitted




Future Testing & Development

e This Project
v"Complete Determination of Optimum RevIL
v'Design and Economic Analysis
* Next Project
v'IL Scaleup for Economic Manufacture
v Address Rates, Transport I1ssues
 Scale-Up Potential

v'Already Working with Industrial Partner
ConocoPhillips a7
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