Development of a Supercritical Oxy-combustion Power Cycle with
99% Carbon Capture
Southwest Research Institute® and Thar Energy L L.C.
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* Engineering development, technology
assessment, and economic analysis used to
evaluate technical risk and cost of a novel
supercritical oxy-combustion power cycle

e Optimized cycle couples a coal-fired
supercritical oxy-combustor with a
supercritical CO, power cycle to achieve 40%
efficiency at low firing temperature, 650 C

— Cycleis limited by TRL of critical components
* COE S$121/MWe with 99% carbon capture

— 49% increase over Supercritical Steam
Without Carbon Capture (581/MWe),
exceeding the 35% target

— 21% reduction in cost as compared to
Supercritical Steam with 90% Carbon Capture
(S137/MWe).

*  Phase 1 completed in September 2013,
Extended to March 2014 to cover closeout

e Budget $1.25 million

* Ready to demonstrate supercritical oxy-
combustor and critical low TRL technologies
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Novel Supercritical Carbon Dioxide Power Cycle
Utilizing Pressurized Oxy-combustion In Conjunction
With Cryogenic Compression
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Outline

* Project and Participants Overview
 Core Technologies

e Techno-economic Analysis
 Technology Gap Analysis

 Bench Scale Testing

e Path Forward
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PROJECT OVERVIEW
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Project Scope

e Evaluate a novel supercritical oxy-combustion power cycle
for meeting the DOE goals of:

— Over 90% CO2 removal for less than 35% increase in cost of
electricity (COE) when compared to a Supercritical Pulverized
Coal Plant without CO, capture

e Cycle evaluation based on:

— Cycle and economic modeling to qualify cost and cycle
performance

— Technology gap assessment to identify critical low TRL
components and technologies

— Bench scale testing to back up cycle models and evaluate state
of low TRL technologies

 Propose development path to address low TRL components
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Participants

Southwest Research Institute

 Projectrole
— Project management

— Cycle analysis and
optimization

— Bench scale testing
— Oxy-combustor design

e Key personnel
— Dr. Klaus Brun

— Dr. Aaron McClung
— Dr. Rebecca Owston
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Thar Energy LLC

Project role
— Technical gap analysis
— Economic analysis

Key personnel

— Dr. Lalit Chordia
— Mr. John Davis

— Dr. Rachmadian "Doni"
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Southwest Research Institute

* Independent, nonprofit applied research and *  Over 1,200 acres facility in San Antonio,
development organization founded in 1947 Texas
e Eleven technical divisions — 200+ buildings, 2.2 million sq. ft of
—  Aerospace Electronics, Systems Engineering & laboratories & offices
Training — Pressurized Closed Flow Loops
— Applied Physics — Subsea and High Altitude Test Chambers
— Applied Power — Race Oval and Crash Test Track
— Automation & Data Systems — Explosives and Ballistics Ranges
— Chemistry & Chemical Engineering — Radar and Antenna Ranges
— Engine, Emissions & Vehicle Research —  Fire testing buildings
— Fuels & Lubricants Research — Turbomachinery labs

— Geosciences & Engineering
— Mechanical Engineering
— Signal Exploitation & Geolocation
— Space Science & Engineering
*  Total 2013 revenue of $592 million
—  38% Industry, 36% Govt., 26% Govt. Sub

—  $6.7 million was reinvested for internal
research and development

e QOver 2,800 staff
— 275 PhD’s / 499 Master's / 762 Bachelor's

Southwgest Benefiting government, industry and the public -
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Machinery Program

* Fluids & Machinery Engineering e Recent Commercial Projects
Department — Test stands for LNG and CNG process
— Mechanical Engineering Division (18) evaluation
e Capabilities - _IA_grStCycIe Machine Design, Build, and
— Root cause failure analysis . .
. . : — Numerical Propulsion System
— Rotordynamic design/audit Simulation® (NPSS®) Consortium
— Pipeline/plant simulation Management

— CFD and FEA analysis

— Test rig design

— Performance testing
* Current DOE Programs

— Phase 3 pilot scale CO2 compression
demonstration

— Sunshot sCO2 turbomahinery
development and demonstration

— SunShot high inlet temperature
combustor development and
demonstration

Sout
§§~ esearc DE-FE0009395 Project Closeout 2/21/2014
STITUTE"




Thar companies:

Systems for fuel production, power generation
and geothermal heating and cooling

Process Supercritical fluid process design and toll
extractions from organic feedstocks

Core competencies:

e 25+ years commercializing “Green”
supercritical fluid technologies (SCF)

e Designer and developer of supercritical
fluid processes, systems & major
components

e Industrial scale 24/7/365 installations,
world wide:

» Food

» Chemicals

» Nutraceutical
» Pharmaceutical

e —

re; ) |
» Chemical e IS -
Pharmaceutical-production system
e Heat exchangers for high pressure, high ... Good Manufacturing Process

temperature application

... Supercritical fluid extraction




Funding

Participant Type Project Budget Cost Share

Southwest Research Not for
Institute® Profit

Thar Energy LLC.

S 715,000.00 S - Aaron McClung

For Profit S  535,000.00 S 250,000.00 John Davis

Project Total S 1,250,000.00 S 250,000.00

Period of Performance: 10/01/2012 through 09/30/2013
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DOE Supercritical Oxy-Combustion Phase I:
Development of a Supercritical Oxy-combustion Power Cycle
with 99% Carbon Capture

________

 Optimized cycle couples a coal-fired
supercritical oxy-combustor with a
supercritical CO, power cycle to
achieve 40% efficiency at a low firing
temperature of 650 C

e COE S121/MWe with 99% carbon
capture
— 49% over Supercritical Steam Without

Carbon Capture (S81/MWe), exceeding
the 35% target

— 21% reduction in cost as compared to
Supercritical Steam with 90% Carbon
Capture (5137/MWe).

 Phase | completed in September
2013, budget $1.25 million

 Ready to demonstrate supercritical
oxy-combustor and critical low TRL
technologies
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Final Supercritical Oxy-combustion
Cycle Configuration

19: Temperature vs. Entropy plot: carbon dioxide

p3 High Temperature Power Loop i jﬁ" A e e
HXLOW ¢ HXHIGH Recompression sCO2 Power Cycle TRWER coa? 4
600.— { %
_ Sequestration L
\’_ > Ready CO2 G
:—( -+ ) £
PPt g
EXPANDER | L
P8 | BOOST 7 =
————————— 1 200
[
COOLING OUT c6 |
€+ —— q |
P1 | 0.000—
- | i T L
COOLING IN 2 | 0.500 1.00
C1 HXMAIN1 : Entropy (kJikg-K)
02 |1
28: Temperature ve. Entrepy plot: carbon dioxide
Coal Slurry —® H20, CaC02, CaSO4, Hg - LEEEFR O
e e b ST
— H20, 02, CaCO2 | fosbesior sapr
CYCLONE FLUE GAS
Combustor Cib CLEANUP G0~
Cco
Combustion Loop o
Coal Fired Supercritical Oxy-Combustion e
3 a0t
-
Power Block | Thermal Loop Overall g
-
e
Efficiency [%] 48 Thermal | 78.9HHV/81.8LVH | 37.9 HHV/39.3 LHV o0
CO2 Flow [kg/s] 4887 4930 Recycle 2 i
. = i
P high / P low [atm] 290/ 82 100/93 000 | | '
P T — o zs0 am
T hlgh / T low [C] 650 / 20 653 / 78 Entropy (kd/kg-K)

Sout RRTATING
Eﬁg esearch DE-FE0009395 Project Closeout 2/21/2014 n"";i

l
STITUTE “Am““[m




Comb

ustion Loop TRL

Operating Conditions
Inlet Outlet
o g 9 %
o = o = o L Assumptions Regarding .
Component/Sub-system Technology Type % % % % Assumed or Specified Performance Characteristics Anticipated Application Issues Technology Readiness
g 3z g 3
£ v € <
}9 a '0_) a
Combustion Loop
Coal Pulverizer Generic 25 1 25 1 |<9kw-h/ton TRLY
Slury Pump Generic 25 1 30 | 92.25 |60% Efficiency TRL9
Supercritical oxy-combustor New vertical flow swirl combustor | 450 95 93 | 92.25 |98+% combustion efficiency Combustor to be demonstrated in TRL 6 at the
Phase 2 completion of Phase 2
demonstration
Dry pulverized coal feed Supercritical CO2 slurry 25 1 <450 | 110 |Minimal added water content TRL 2
Dry pulverized coal feed Posimetric Pump 25 1 <450 | 110 |Dry feed Demonstrated systems can not TRL4
achieve pressure ratio
Removal of solid products of combustion |Lock-hopper 703 92 80 1 |Fluid and thermal losses, impact on efficiency TRL4
unknown
Cyclone Separator Generic 703 93 703 91 [98% Removal Materials considerations and TRL9
3 atm dP thermal insulation for hot gas
cleanup
Recouperator (HXMAIN) Compact micro-channel heat 703 91 460 88 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
Pre-heater (HXCLEAN) Compact micro-channel heat 460 88 162 85 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
Sulfur Cleanup Under evaluation for hot, high 162 85 ? ? |Under Evaluation to identify technologies compatible |High efficiency requirements drive TRL5-9
pressure cleanup with loop conditions the need for hot, high pressure | depending on cleanup
cleanup conditions
Water Removal Under evaluation for hot, high 162 85 ? ?  |Under Evaluation to identify technologies compatible [High efficiency requirements drive TRL5-9
pressure cleanup with loop conditions the need for hot, high pressure | depending on cleanup
cleanup conditions
Boost Pump Generic 150 80 95 Seals and materials for TRL9
supercirtical CO2
Air Separation Unit Cryogenic 30 1 450 93  |140 kWh/t for 95% 02 based on literature TRL9

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804)
Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650)
Note 3: Materials and manufacturing assumptions for cost and performance

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804)
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Power Loop TRL

Operating Conditions
Inlet Outlet
o g 9 ¥
o = o = o . Assumptions Regarding .
Component/Sub-system Technology Type % % % % Assumed or Specified Performance Characteristics Anticipated Application Issues Technology Readiness
g 3z g 3
£ o £ o
}9 a '0_) a
Power Loop Supercritical CO2 Recompression TRL 7, See Note 1
Cycle
sCO2 Turbo-expander 650 | 290 | 509 86 [90+% efficiency See Note 4 TRL 7, See Note 1
Recouperator (HXHIGH) Compact micro-channel heat 509 86 213 84 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
Recouperator (HXLOW) Compact micro-channel heat 213 84 70 83 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
sCO2 Pump/Compressor 70 83 190 290 |05+% efficiency See Note 4 TRL 7, See Note 2
sCO2 Pump/Compressor 25 82 60 290 |05+% efficiency See Note 4 TRL 7, See Note 2
Pre-cooler Compact micro-channel heat 70 83 25 82 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804)

Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650)

Note 3: Materials and manufacturing assumptions for cost and performance

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804)
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Economic Assessment

e Revised* COE of $S121/Mwe with 99% carbon
capture

— 49% over Supercritical Steam Without Carbon
Capture (S81/MWe), exceeding the 35% target

— 21% reduction in cost as compared to Supercritical
Steam with 90% Carbon Capture (S137/MWe).

* COE revised based on feedback from the Phase Il Application




Technology Development: Proposed
follow on

Cyclone
~ Separator

Oxy-combustor

e 1 MWth Supercritical Oxy-combustor - Supercrtcl

Demonstration

 Test bed for technology development
— Supercritical oxy-combustor

— Particulate cleaning of the compact
microchannel heat exchanger
Water Compressor

— Solids injection at pressure Scrubber Underow
— Solids removal at pressure

Separation

 Advance technologies from TRL 2, Water
Technology Concept, to TRL 6, Pilot Cyclone

Separator

Scale System Demonstrated in a

Relevant Environment ‘
. T
e Operate with coal water slurry, plan for A

dry feed or sCO2 slurry extension 3
y y ‘.....5&

Cooling Tower

Underflow

1 Supercritical
Particulate

g Oxy-combustor
Separation
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Oxy-Combustion Test Loop

Operating Conditions

*  Major components
— Charge Compressor or Pressurized CO2 Feed
— Combustor

e Oxygen feed
e Coalslurry feed
— Cyclone separator
e Solids removal and handling
— Recuperater
— Water scrubber and cleanup
e Liquid removal and handling
e CO2removal and handling
— Cooling Tower
— Boost Compressor

Coal Fired Supercritical Oxy-Combustion Test Loop

cL
02 - =

Coal Slurry  =--—--

CYCLONE

Combustor

Underflow Particulate
co Removal

450 - 650 C (800 — 1200 F)
102 atm (1500 psi)

Flow Rates: 1 MWth

H20

Clb | ] P Solids

Sout

3.4 kg/s Hot side flow rate
3.2 kg/s CO2 recycle

0.05 kg/s Coal feed

0.08 kg/s 02 Feed

4.25 kg/s H20 Recycle

c7
[———

|

|

| CO2 Capture
I and Disposal
|

H20, Products of Combustion
H20

FLUE GAS
CLEANUP
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TECHNOLOGY OVERVIEW
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Proposed Cycle: Cryogenic Pressurized
Oxy-combustion (CPOC)

* Transcritical cycle (gas, liquid, and supercritical
states)

* Leverage iso-thermal compression to minimize

e ISOTHERMAL CO2 POWER coz
compression wor PowER compres<OR . crvo Puwe
]NF'UT\
co2 gas quuldCOZ |m T I
—_ | SEQUESTRATION |
S e e e oopn, 3DDp 2200 psia \_ REapYCOZ |
B ’ )
100°F REFRIGERATION Q°F 20 °F
M HEAT
EXCHANGER
CO2 at atm Supercritical 2200 psia,
Conditions: coz2 20°F
15 psia,
100°F TURBO CYCLONE _
EXPANDER SEPARATION FossIL FUEL,
€——— CH,+
H20+ €02 +H20 02 420
residuals (liquid) [SC steam) PURE
< P e
N 2200 psi OXYGEN
15 psia, psia,
98° 982°F
WATER SEPARATION / E
FLUE GAS CLEAN-UP
Fly Ash + Ooxy-
Particulates COMBUSTION
POWER OUTPUT, CHAMBER
TO ELECTRICAL
GENERATCOR

Sout

Bl

esearc

ROTHTI
DE-FE0009395 Project Closeout 2/21/2014 ;
STITUTE

smr..or!{

miCHINERY



Proposed Cycle: Supercritical Oxy-
combustion

* Leverages recent SunShot and DOE-NE cycles
development

o Efficiencies up to 60% possible for the power block

POWER RECOMPRESSCR
““““““““““

PUT\ | SEQUESTRATION |
- = i READY CO2 |

Pt ______
\/ HIGH TEMP
RECOUPERATOR -
Supercritical
[——"]
> > 02
OxXy-
POWER COMPRESSOR co ON
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INPUT -~ v
|\' FossiL FUEL,
> €——— CH,+
- Cal
o I/ PURE
TURBO OXYGEM
EXPANDER €02 +H20

POWER
INPUT

COOLING
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S()ut FLUE GAS CLEAN-UP T0 ELECTRICAL
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Anticipated Technology Areas

* Primary
— Pressurized oxy-combustion
* Negate need for CO2 recompression
* Increase combustion and cycle efficiencies
e Secondary
— High-pressure and high-temperature cleanup technologies
e Required to commercialize a sCO2 oxy-combustion cycle
 Tertiary
— High efficiency power cycle
* Must be cost effective to be a viable commercial project
e Unplanned

— Solid fuel injection at pressure

* Impact of slurrying agent (water) on efficiency
— Solid waste removal at pressure

* Removal of (hot) solid waste under pressure
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Direct Fired Cycles

e Managing contaminants
— Fly ash and particulates (erosion, clogging)
— Heavy metals (corrosion)
— Water (corrosion)
— Gasses (expander performance, corrosion)
e Gas quality

— Gas composition will vary with fuel and cleanup
technology, equipment condition
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Indirect Cycles

e Anticipated technology developments contained in the
thermal loop

— High pressure oxy-combustor

— Cleanup (Fly-ash, Metals, Water, Gases) of supercritical
CO2

e Power cycle is tertiary for this project

— Any power cycle can be integrated into dual loop
configuration with minimal modification

— Technology enhancements can be re-integrated into a
single loop configuration down the line

e Potential efficiency hit with interface heat exchanger

Southwest
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TECHNO-ECONOMIC ANALYSIS
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Approach

Components and

esearch

Cycle Model Components and R Oper.aFlng Oper.aFlng Cycle Iay.out and
flow rates - Conditions Conditions design
conditions
Sensitivity of LCOE Economic Model Sensitivity of LCOE A A o G
w.r.t. Cycle w.r.t. Technology
Component Technology Ga Selected
specifications and €«— Component cost €— gy ap T dk
Analysis Components
TRL
\ 4
Bench Scale Combustion
Testing Characteristics
i \ 4
Final
e Combustor cost Combustor Design ina Corpbustor
Performance Design

DE-FE0009395 Project Closeout 2/21/2014
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Analysis Methods

e Cycle models
— Aspen Plus 7.3.2

— Power cycle models without combustion for comparison and
optimization

— Optimized cycle with combustion
e Economics
— DOE Power Systems Financial Model (PSFM)
— Plant specifics determined by QGESS and FOA
— Component costs incorporated from Tech Gap Analysis
— Plant performance determined by cycle analysis
e Technology Gap Analysis

— Required components determined by initial and optimized cycle
layouts

— Component level technology assessment determined through
discussion with vendors and literature search
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Cycle Analysis

e Aspen Plus 7.3.2 for cycle performance analysis

— Mature component specifications from vendor or
QGESS Process Modeling Design Parameters

— Low TRL component data from engineering
assessment

 Evaluated baseline power block performance of
the two proposed cycles

* |ncorporated combustion model into selected
cycle

* Optimize cycle configuration for high efficiency,
low cost
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CPOC Power Block

CPOC w/out Combustion Thermal Efficiency

Sensitivity Results Curve
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sCO2 Recompression Power Block

sCO2 w/out Combustion Thermal Efficiency

Sensitivity Results Curve
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Cycle Layout Challenges

e Recuperated sCO2 power block has a narrow thermal input band
— Change in temperature across power block is only 250 C
— Minimize thermal losses through the system
— Hot combustor inlet

* Gas phase cleanup must occur at low temperature to condense water, remove
sulfur, condensable gasses

e Particulate removal prior to gas turbine (direct) or interface heat exchanger
(indirect)
— Leads to hot particulate removal
— Particulates are at pressure, must be removed to ambient conditions

e Combustor operating pressure
— Direct fired combustor must operate at high side turbine pressure, 270 atm
— Indirect fired combustor can operate at reduced pressure, above75 atm
— Higher pressure required advanced pulverized coal injection technologies

* Indirect cycle incurs efficiency penalty due to interface heat exchanger
* Coal-water slurry feed has significant efficiency impact depending on water
content
— Losses due to heat of vaporization are not recoverable
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Indirect Cycle Model with Supercritical
Oxy-Combustor

Power Block

Cleanup
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Final Supercritical Oxy-combustion
Cycle Configuration

19: Temperature vs. Entropy plot: carbon dioxide
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Economic Assessment

e Reported COE of $162/MWe with 99% carbon
capture in June 2013

e Revised* COE of $121/Mwe with 99% carbon
capture

— 49% over Supercritical Steam Without Carbon
Capture (S81/MWe), exceeding the 35% target

— 21% reduction in cost as compared to Supercritical
Steam with 90% Carbon Capture (S137/MWe).

* COE revised based on feedback from the Phase Il Application
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Revisions to COE Calculation

e Per DOE Feedback

— Revise coal cost from $10.25/ton to $36.57/ton in
calculating TOC (based on 2012 QGESS Feedstock
Costs)

— Installation factor should not have been applied
when calculating BEC

 Changes to match analysis

— Revise initial fuel requirements for calculating TOC
based on predicted 39% HHV plant efficiency,
reduce inventory from 6102 ton/d to 5000 ton/d
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Estimated equipment costs, 550 MW pressurized oxy-
combustion power plant, single power block

Base cost Units Spare cost  Spares Total

Process equipment $ Million _ operating  $ Million on hand S Million
Core systems

Cyclones, inc. linings, peripherals $53 18 52.7
- Spare cyclones 2.9 2 5.9
FGD, inc. metals removal $45 1 45.0
-- Spare scrubber 6 1.7 1 1.7
-- Spare hydrocyclone 12 0.1 2 0.2
Piping, combustion side $30 1 29.9
ASU ex pumps $160 4 160.0
-- Standby ASU spare 40.0 1 40.0
Pumps for lig. 02 S6 8 6.0
-- Spare pump 0.8 1 0.8
Coal slurry preparation $2 1 2.0 1 4.4
SunShot power loop @ $1,200/kWe $660 1 66.0 1 726.0
HXs, combustion side $140 8 140.1
-- Spare HX 17.5 2 35.0
Combustor, No spare S68 1 68.0 0 67.7
1st Subtotal (BEC), Core systems $1,164 1,315.3
Support facilities *

Coal receiving 24.4
Coal crushing 16.6
Ducting and stack 21.3
Ash handling 6.5
Accessory electric plant 32.2
Instrumentation & control 12.1
2nd Subtotal (BEC), Ancilliary systems 113.1
Total BEC, equipment 1,428.4

* Numbers drawn from NETL Bituminous Coal Utility study, 2012 update,
Case 12 (PC with sequestration)
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Capital costs according to PSFM
guidelines (in red)

Totals for:

Portion Cumulative F rO m Te C h G a p

Capital cost category Basis Factor S $ Million .
BEC - Bare Erected Cost é/ a n a Iys I S

Process equipment ** Itemized cost summary 1,315.30

Support facilities *** NETL, 2012 update, Case 12 113.1

Total BEC 1,428.40, 1,428.40
EPC - Engineering Project Costs

Total EPC portion 0-10% BEC, "process in use" 10% 142.84 1,571.24 *
TPC - Total Project Costs

Process cost 5-20% of process capital 20% 314.248

Project cost 15-30% of BEC+EPC+process cost 30% 471.372

Total TPC portion 785.62 2,356.86
TOC - Total Overnight Cost

Royalties Assume zero 0

Pre-production Gross estimate 1

- 6 mos labor Included in gross estimate

- 1 mo maintenance materials Included in gross estimate

-1 mo non-fuel consumables Included in gross estimate

- 1 mo waste disposable Included in gross estimate

Working capital Accounted for in PSFM model

Inventory capital:

- Spare parts 0.5% of cum TPC 0.50% 19.4

- Initial fuel (60 days) 5,000 ton/d $36.00 13.34

- Initial CaCO3 (60 days) 1.45 kg/s = 3.2 Ib/s makeup $0.20 0.1

Land, for PC-type utility 300 acres 3,000 0.9

Financing - cost of securing it Percent of TPC 2.70% 105

Other owner's costs Percent of TPC 15% 583.4

Total Owner's cost 722.14 3,079.00
TASC - Total As-Spent Capital

Escalation while expending capital Accounted for in PSFM model o]

Interest while expending capital Accounted for in PSFM model 0

Total TASC 0 3,079.00
Analysis:

TASC by PSFM calculation 2,505.12

w/TS&M  w/ TS&M

Benchmark COE Case 11, 2012 update 80.95 N/A

Benchmark COE w/ 90% CCS Case 12, 2012 update 137.28 147.47

COE by PSFM Includes O&M N/A 121.21

*  Cumulative amount goes to Cell B37, "Plant Inputs" page of PFSM workbook

«  TASC calculation comes from Cell B12 of the "COE Calculation” page of the PSFM workbook
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Operations and maintenance cost
in S thousand

Operations and maintenance cost, $ thousand
Bold items entered on O&M page of PSFM workbook

PSFM
page,
Cost items Measure Rate $/h $1,000/y Cell ID Source:
Variable costs:
Labor:
$33.3
Operating labor base rate S/hr 6 S$33.36 69 BLS, NAICS 221100 job category 51-0000, May 2013
Operating labor burden % of base 30% $10.01 21 B27 Rate from Exhibit 4-13, Case 12, August 2012
Labor O-H charge rate % of labor 25% $10.84 23 Rate from Exhibit 4-13, Case 12, August 2012
Subtotal: Operating labor wages ex burden, per operator 92 B26 Calculated
Total: Operating labor cost per operator 113 Calculated
Estimated operating laborers 65 B25 Calculation based on Exhibit 4-13 oper. labor cost
Administrative and supervisory Total 1,674 Exhibit 4-13, Case 12, August 2012
Per
Administrative and supervisory operator 25.56 B28 Calculated
Consumables:
Water Total 3,804 B31 Exhibit 4-13, Case 12, August 2012
Chemicals Total 24,914 B32 Exhibit 4-13, Case 12, August 2012
Waste disposal Total 5,129 B34 Exhibit 4-13, Case 12, August 2012
Fixed costs:
Administrative and supervisory Total 3,348 B37 Exhibit 4-13, Case 12, August 2012
Taxes and insurance 39,025 B38 Exhibit 4-13, Case 12, August 2012
Maintenance costs % EPC/yr 3% 86,527 B39 Thar assumption
Assumptions and Benchmarks:
Base hours in year: 2,080
*Qperating labor cost:  $7,384,208 per yr
*Maintenance labor cost:  $12,705,913 per yr (included in overall maintenance percentage)
*Administrative & support labor cost:  $5,022,530 per yr (assume 1/3 variable, 2/3 fixed)
*Property taxes and insurance: $39,024,956 peryr

* Benchmarks taken from Exhibit 4-13, Case 12, August 2012
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TECHNOLOGY GAP ANALYSIS
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Methodology

e Tabulate components required for the cycle layouts
— ldentify commercially available components

— ldentify relevant technologies, vendors for non-standard or immature
components

 Provide component cost and performance feedback to
economic and cycle models

Tech Gap Analysis Task 1 2 3 4 5 6 7 8 9
Identify critical components -

Review tech alternatives of critical components
Downselect tech alternatives
TRL assessment

Vendor quotes and sizing calcs

Reporting -

DE-FE0009395 Project Closeout 2/21/2014
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Comb

ustion Loop TRL

Operating Conditions
Inlet Outlet
o g 9 %
o = o = o L Assumptions Regarding .
Component/Sub-system Technology Type E % % % Assumed or Specified Performance Characteristics Anticipated Application Issues Technology Readiness
g 3z g 3
£ o £ o
}9 a '0_) a
Combustion Loop
Coal Pulverizer Generic 25 1 25 1 |<9kw-h/ton TRLY
Slury Pump Generic 25 1 30 | 92.25 |60% Efficiency TRL9
Supercritical oxy-combustor New vertical flow swirl combustor | 450 95 93 | 92.25 |98+% combustion efficiency Combustor to be demonstrated in TRL 6 at the
Phase 2 completion of Phase 2
demonstration
Dry pulverized coal feed Supercritical CO2 slurry 25 1 <450 | 110 |Minimal added water content TRL 2
Dry pulverized coal feed Posimetric Pump 25 1 <450 | 110 |Dry feed Demonstrated systems can not TRL4
achieve pressure ratio
Removal of solid products of combustion |Lock-hopper 703 92 80 1 |Fluid and thermal losses, impact on efficiency TRL4
unknown
Cyclone Separator Generic 703 93 703 91 [98% Removal Materials considerations and TRL9
3 atm dP thermal insulation for hot gas
cleanup
Recouperator (HXMAIN) Compact micro-channel heat 703 91 460 88 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
Pre-heater (HXCLEAN) Compact micro-channel heat 460 88 162 85 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
Sulfur Cleanup Under evaluation for hot, high 162 85 ? ? |Under Evaluation to identify technologies compatible |High efficiency requirements drive TRL5-9
pressure cleanup with loop conditions the need for hot, high pressure | depending on cleanup
cleanup conditions
Water Removal Under evaluation for hot, high 162 85 ? ? |Under Evaluation to identify technologies compatible |High efficiency requirements drive TRL5-9
pressure cleanup with loop conditions the need for hot, high pressure | depending on cleanup
cleanup conditions
Boost Pump Generic 150 80 95 Seals and materials for TRL9
supercirtical CO2
Air Separation Unit Cryogenic 30 1 450 93  |140 kWh/t for 95% 02 based on literature TRL9

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804)
Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650)
Note 3: Materials and manufacturing assumptions for cost and performance

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804)
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Power Loop TRL

Operating Conditions
Inlet Outlet
o g 9 ¥
o = o = o . Assumptions Regarding .
Component/Sub-system Technology Type % % % % Assumed or Specified Performance Characteristics Anticipated Application Issues Technology Readiness
g 3z g 3
£ o £ o
}9 a '0_) a
Power Loop Supercritical CO2 Recompression TRL 7, See Note 1
Cycle
sCO2 Turbo-expander 650 | 290 | 509 86 [90+% efficiency See Note 4 TRL 7, See Note 1
Recouperator (HXHIGH) Compact micro-channel heat 509 86 213 84 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
Recouperator (HXLOW) Compact micro-channel heat 213 84 70 83 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP
sCO2 Pump/Compressor 70 83 190 290 |05+% efficiency See Note 4 TRL 7, See Note 2
sCO2 Pump/Compressor 25 82 60 290 |05+% efficiency See Note 4 TRL 7, See Note 2
Pre-cooler Compact micro-channel heat 70 83 25 82 |5 C Pinch Point See Note 3 TRL 7, See Note 1
exchanger 3 atm dP

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804)

Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650)

Note 3: Materials and manufacturing assumptions for cost and performance

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804)
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Critical Components

e Supercritical oxy-combustor for solid fuels
— Novel, low TRL component

e Compact, micro-channel heat exchanger
— Initial development under SunShot DE-EE0005804

— Tolerance to particulate loading and cleaning methods
should be demonstrated

e Coal-water slurry feed

— Water content has large impact on cycle performance
e Particulate removal

— Represents a technical challenge

— Potential source for significant thermal and efficiency
losses
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SWRI Oxy-Combustor Concept

 Pulverized coal + water slurry

— Recycle water from combustion
loop cleanup

— Water provides flame
€02 njection port e L temperature control
e Rotating impeller fuel injector

— Optimize shear-mixing of slurry,
CO2, and 02

— Controlled fuel injection rate
through impeller, O2 injection
controls flame position

e CO2 cooled liner

— Flame position, diffusion, and
dilution control

— Flame centering
— Wall temperature buffering

Primary combustion zone

Combustor Liner

Lower forging
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Combustor Design

Concept

* Designed to feed a coal-water
slurry and O2 into supercritical
CO2

— Inlet Temperature 450 C (842 F)
— Inlet Pressure 96.5 bar (1400 psi)
— Firing Temperature 700 C (1292 F)

e Limited data on coal combustion
at elevated pressures

e Combustor design through _
simulation, augmented with coal Analysis ¢
combustion properties testing

e Flow rates at 550 MWe

— Coal 50 kg/s
— 02 80 kg/s
— H20 50 kg/s
— CO2 4000+ kg/s

Sout ROTATING
EpjgResearch il




Coal Slurry CFD Modeling — Particle Physics

Coal Slurry Droplet Physics: DPM (Discrete Phase Model)

— Evaporation (heat transfer via convection and radiation)
— Devolatilization of Coal
— Gas Phase Reactions:

¢ C 16H33,00,68N0.050350.204 + 1.090, > 1.18CO + 1.66H,0 + 0.0251N, + 0.022450,
* CO+0.50, > CO,

Residence Time (s)

1.64e+01
1.56e+01
1.48e+01
1.40e+01
1.37e+01
1.23e+01
1.1%9e+01
1.07e+01
9.85e+00
9.03e+00
8.21e+00
7.39e+00
6.57e+00
5.75e+00
4 93e+00
4.11e+00
3.28e+00
2.468e+00
1.64e+00
8.21e-01
0.00e+00

Example: 100 um slurry particle
size (50/50 coal-water, wt. %)
using stochastic tracking for
turbulent dispersion of
particles.
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Supercritical Oxy-combustor

S e Completed initial design
) * o .
v\ I during Phase |
il Py, — Sized for 1 MWth
il SuE. | — Flow optimization with
) w4 reactions using Fluent
and Chemkin
i - — Structural analysis for
100 atm, 650 C

* |nitial test stand design
to demonstrate the
swirl combustor
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Micro-channel compact heat exchanger tolerant
of particulate loading

e Compact, low cost heat exchangers are a key
technology impacting footprint and cost of the
supercritical oxy-combustion cycle

— Microchannel heat exchangers are currently at a low
TRL, but are actively being developed for multiple
applications including supercritical CO2 power cycles.

e |tis expected that 1-5 micron may pass through
the cyclone separator

— Heat exchanger sparing and cleaning are important
considerations.
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CWS Alternatives

 Water concentration e Alternative injection
has a direct influence technologies include
on combustion — sCO?2 as a slurrying agent
efficiencies — Posimetric pump

— Loss due to latent heat
of vaporization

% Water/Coal | % Efficiency | % Efficiency
* Steam is not an asset by weight | (HHV) | (1)
. 0.0 37.50 38.90
for this CyC|e 25.0 35.18 36.51
) ] 50.0 29.70 30.80
configuration
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sCO2 Slurry Feed Concept

Variation on the LICADO
process and the work of
Botero

Utilize a selective
agglomeration process to
separate pulverized coal
based on carbon content

High carbon content is
entrained in CO2

Two operational modes

— Separate below combustor
pressure and pressurize slurry

— Separate at elevated pressure
using CO2 boost

esearch
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Slurry Pump

WWH

Recycled Flue
Gas Stream

Dense Phase

Coal-Water
Mixer

Boost Pump

Mixing Vessels

L
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C02 and
organic
content to
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Particulate Removal

e Cyclone separator used to
remove fly ash from hot gas WILey
stream prior to the micro =

channel heat exchanger Oyclne i \ =)

e Fly ash must be captured
from underflow and
depressurized for treatment

Clean gas
A) outlet

or removal
e Two concepts identified for
further investigation
— Lock chamber installed in o
between two off-phase Y

control valves (left)

— Water injection with orifice
pressure reduction (right)
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BENCH SCALE TESTING

ROTATING
{

DE-FE0009395 Project Closeout 2/21/2014

miCHINERY



Bench Scale Testing

e Combustion properties of pulverized coal in CO2
— Coal slurry preparation
— Injector visualization
— Combustion testing using the 1QT

e Rotary atomizer visualization

— Evaluate idealized atomizer for atomizing coal slurry
into CO2

— Density ratio O(1) compared to O(100) to O(1000) for
typical rotary atomizer applications

— Documented in final report
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Combustion Properties Testing

 Measure autoignition delay for pulverized coal
in supercritical CO2

e Evaluated using SwRI’s Ignition Quality Tester
(1QT)
— Standard test apparatus for developed by SwRI

* Preliminary work included slurry preparation,
injector modification, injector visualization
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Slurry Preparation

 PRB coal provided by
CPS Energy of San
Antonio

e Refined to 15 um and 7
um for compatibility
with the IQT injection

system
* Slurries of varying ratios 4
. R wn
prepared using water, Ry B S
. . S S I RO Y _.‘-". s N
iso-octane, and tolunine B2 i s
A ;.j?f.,: e (W

Particulate distribution and agglomeration in a
20% coal and iso-octane slurry

Sout
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Injector Visualization

* Need to verify spray pattern using modified
IQT injector P, g

— Ensure proper distrubution et

— Minimize contact with 1QT wall ';.__T'.; '. S
e Utilize Optical Bomb operated by SWRI D|v 3

— Used for combustion testing and visualization

— Rated for pressure, not temperature and pressure

Stock Injector Modified Injector
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Injector Visualization

Slurry is carried with greater momentum compared to typical diesel injection

1/5400 s 2/5400's 3/5400 s

Diesel into air
at 12.8 bar with
needle valve

Diesel into air
at 1 bar with
needle valve tip
removed

Sand slurry
into air at 1 bar
with needle
valve tip
removed
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QT Autoignition Delay Testing

e The Ignition Quality Test Apparatus (IQT™) is
a bench top constant-volume combustion

chamber

* Used to quantify the reactivity of fuel and
lubricants

e Method

— Heated combustion chamber is filled with
compressed gas at elevated pressure

— Test fluid is injected using a pump-line-nozzle

injector
— Ignition delay is then measured as shown at
|Ower right ‘ Ignition Delay +
e Moadifications for Coal Slurry O Recovery Point *
— Stock fuel pump replaced with a variable
displacement pump Necate
— Injector tip modified to flow solid fuel slurry Lire
— Testing run in diagnostics mode to acquire \
nee_dle lift and combustion trace on an \ S S
oscilloscope N
o 1 2z 3 4 5 e 7 8 3 10
Time (MS)
S()ut ROTATING
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Typical Test Results

4.5

R I
3.5

S S

e 40% coal —iso-octane

[ IIJ_ o A e g e S

slurry with 15 pum coal

particles clogged after

Combustion Sensor [V]
(%]

—Needle 1
——Combustion
Needle 2

——Combustion 2

0 /
two injections S -
-0.5 | T T 1
e 20% coal —iso-octane 7 e atermectionlomsec]
slurry with 7.5 pm coal Y iy
particles provided E
consistent ignition i Y

10.00
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Autoignition Delay Timing

Charge Air Iso-Octane
Fuel Skin Temperature Temperature Avg. Ignition Delay
o o 50
[°q] [°ql [msec] ‘g
568 538 9.7748 = 40 ‘X
500 475 12.4238 < 30
450 420 27.321 p \
£ 20
o 437.5 411 32.543 B \s;
c c +
£ 431 406 38.695 & 10
(@] [
5 428 400 38.982 w 0 T T . )
w)
= 426 399 40.705 g 350 400 450 500 550
425 398 42.9845 < Charge Air Temperature (°C)
425.5 398 40.852
400 376 no-combustion 20% Coal - Iso-Octane Slurry, 7.5 pm\
< 423 395 20.052
R 423 395 14.968 — 50
5o - 2
52 420 394 21.167 £ 40
c £ >
S8 415 391 28.653 § 30
g L,E’# 400 376 27.879 = 20
BN 400 373 46.721 =
=) ‘c 10
N 400 373 27.209 o
gJD 0 T T T 1
g 350 400 450 500 550
2 Charge Air Temperature (°C)
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PATH FORWARD
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Proposed Phase Il:
1 MWth Supercritical Oxy-combustor Demonstration

e Test bed for technology development
— Supercritical combustor
— Particulate cleaning of the compact microchannel heat exchanger
— Solids injection at pressure (sCO2 slurry, posimetric pump)
— Solids removal at pressure
 Advance technologies from TRL 2, Technology Concept, to TRL 6, Pilot Scale System
Demonstrated in a Relevant Environment

 Operate with coal water slurry, plan for dry feed or sCO2 slurry extension

o~ Water

- ‘. Supercritical w :‘,.‘- Cyclone Scrubber
S Oxy-combustor _—] | | " Separator =
Cyclone
/‘\ Separator
&
\ ?t‘]———-___‘_____‘*_:____
| - \ ! =
| A2 ) |
4 |
| .. 0 7 - |
 — Boost @ YL .
Water Compressor - ‘ - -
Scrubber Underflow
Particulate Underflow Supercritical
Separation Particulate Oxy-combustor
Separation
Sout
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Critical Components Development
Path

e Supercritical oxy-combustor for solid fuels
— Initial design completed for Phase || Demonstration
e Compact, micro-channel heat exchanger

— Tolerance to particulate loading and cleaning methods
should be demonstrated

 Coal-water slurry feed
— Coal-sCO2 slurry
— Posimetric pump

e Particulate removal
— Adaption of conventional technologies
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Oxy-Combustion Test Loop

e Test Hardware
— Charge Compressor or Pressurized CO2 Feed B278 J-'-_ el

— Combustor
e Oxygen feed

e Coalslurry feed J_ R
—  Cyclone separator = %’[

* Solids removal and handling EWW i

|
— Recuperater P )
— Water scrubber and cleanup - ‘;
* Liquid removal and handling l ’
e CO2removal and handling

— Cooling Tower :

— Boost Compressor ‘ -
e  Operating Conditions

— 450-650C(800—-1200F) Coal Fired Supercritical Oxy-Combustion Test Loop

— 102 atm (1500 psi)

*  Flow Rates: 1 MWth
— 3.4 kg/s Hot side flow rate

£02 Capture

1 and Disposal
— 3.2kg/s CO2 recycle or e | _
_ 005 kg/S Coal feed Coal Slurry —--—-- —= H2XO, Products of Combustion
— 0.08 kg/s 02 Feed CYCLONE - e
e

— 4.25kg/s H20 Recycle om— L = 0 FLUE G

o Underflow Particulate
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WRAPUP
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Development of a Supercritical Oxy-combustion Power Cycle with
99% Carbon Capture
Southwest Research Institute® and Thar Energy L L.C.

-_—————

* Engineering development, technology
assessment, and economic analysis used to
evaluate technical risk and cost of a novel
supercritical oxy-combustion power cycle

e Optimized cycle couples a coal-fired
supercritical oxy-combustor with a
supercritical CO, power cycle to achieve 40%
efficiency at low firing temperature, 650 C

— Cycleis limited by TRL of critical components
* COE S$121/MWe with 99% carbon capture

— 49% increase over Supercritical Steam
Without Carbon Capture (581/MWe),
exceeding the 35% target

— 21% reduction in cost as compared to
Supercritical Steam with 90% Carbon Capture
(S137/MWe).

*  Phase 1 completed in September 2013,
Extended to March 2014 to cover closeout

e Budget $1.25 million

* Ready to demonstrate supercritical oxy-
combustor and critical low TRL technologies
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