Siemens Gasification and IGCC Update

Harry Morehead, Manager,
IGCC and Gasification
Business Development

Presented at
Gasification Technologies 2008
Washington, DC
October 7, 2008
Agenda

- Recent Highlights
- Gasification Update
- IGCC Update
- IGCC and Gasification O&M / Gasifier Services
- Conclusions

Experience breeds confidence
Recent Siemens IGCC and Gasification Highlights

- 2 SFG-500 gasifiers have arrived in China, two more will ship this month, and two will ship for Secure Energy at end of 2008

- New contracts:
 - EPCOR, Genesee IGCC Project (SFG-500 gasifier)
 - AEC, Latrobe Valley, UREA, Australia

- Technology selected for two IGCCs in the US and Europe

- Vresova refractory lined gasifier in commercial operation

- 4 FEEDs completed

- 10 feasibility studies completed
• Two SFG-500 Gasifiers shipped, 7 being manufactured
• Technology selected and in pre-selection in further projects
Siemens SFG Gasification Technology

SFG Gasifiers

Current Gasifier Products
- SFG-500 500 MW_{th}
 • Cooling Screen Design
 • Refractory Lined Gasifier

Siemens Gasification Test Facility

Highlights

- **OEM Support**
 - Siemens manufactures the critical gasification equipment
 - Siemens invests in R&D to improve both gasifier and gasification island design
 - Siemens provides local sales and gasifier component/service support throughout life of project

- **Project Development Support**
 - Siemens can provide feasibility or pre-FEED information for initial project definition
 - Siemens can provide gasification island basic design and process design packages during FEED
 - Siemens comprehensive gasification test facility is available to confirm gasification characteristics

Siemens OEM support before, during and after construction
Gasification conditions depend on feedstock characteristics:

- Carbon, hydrogen content, heating value, moisture level
- Ash composition determines ash melting temperature
- Gasification temperature above AMT: 1,300 - 1,800 °C (2,370 - 3,270 F)

Feedstock Type

<table>
<thead>
<tr>
<th>Solid</th>
<th>Liquid</th>
<th>> 2 %</th>
<th>< 2 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic dense flow feeding system</td>
<td>Feed pumping</td>
<td>Reactor wall with cooling screen</td>
<td>Reactor wall with refractory lining</td>
</tr>
<tr>
<td>Dust fuel burner</td>
<td>Liquid spray burner</td>
<td>Slag layer for thermal protection</td>
<td></td>
</tr>
</tbody>
</table>
Typical Design Challenges for Gasification Applications

<table>
<thead>
<tr>
<th>Typical feedstock characteristics</th>
<th>Siemens design solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids or liquids</td>
<td>Dry and liquid feeding systems available</td>
</tr>
<tr>
<td>Low ash content</td>
<td>Mixing with coal or addition of ash</td>
</tr>
<tr>
<td>High sulfur content</td>
<td>Tolerant to high sulfur levels</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>Captured in slag</td>
</tr>
<tr>
<td>Alkali metals, chlorines</td>
<td>Condensed by full quench</td>
</tr>
</tbody>
</table>

Typical feedstock characteristics:
- **Coal**
- **Slag**

Copyright © Siemens Energy, Inc. 2008. All rights reserved.
Siemens SFG-500 Gasification Island with Full Water Quench

Features

Feedstock flexibility
- Wide range of coals
- Petcoke
- Coal / Petcoke blends
- Liquid Feedstocks

Entrained flow gasifier
- No tars or oils produced
- Vitreous slag

Full Water Quench
- High water content in raw gas

Mechanical syngas cleaning system

Optimized for chemical syntheses and IGCC with CO₂ capture
Siemens Fuel Gasification Technology Highlights
SFG-500 Standard Design (Cooling Screen)

Dry feeding
- High efficiency
- High carbon conversion rate (> 98 %)

Cooling screen
- Short start-up / shut-down
- Low maintenance
- High availability

Full quench
- Simple and reliable
- Ideal for CO sour shift

Multi-fuel gasifier
- Accepts a wide variety of fuels (e.g., bituminous & sub-bituminous coal, lignite, biomass, liquid wastes)
- Tar free raw gas
Siemens Fuel Gasification Technology Highlights
Refractory Lined Gasifier Design

- **Liquid feeding**
 - High efficiency
 - High carbon conversion rate (> 98 %)

- **Refractory lined**
 - Accommodates low ash feedstocks

- **Full quench**
 - Simple and reliable
 - Ideal for CO sour shift

- **Multi-fuel gasifier**
 - Accepts a variety of low-ash fuels (e.g., tars, oils, and other liquid wastes)
 - Tar free raw gas
Siemens Gasification Test Facility

- Gasifier reactor with cooling screen, 3-5 MW, max. 30 bar
- Different fuel feeding systems (300 kg/h)
 - Pulverized fuel dosing & feeding system
 - Slurry feeding
- Full gas treatment
 - Desulphurization unit (Sulferox)
 - COS hydrolysis
 - HCN hydrolysis
- Waste water treatment

Over 60 feedstocks tested in over 100 tests provides valuable design data for better FEEDs
Siemens Gasification Test Facility
Gasification Test Results

Recent Feedstocks Tested:
- Bituminous Coal
- PRB
- Lignite
- Petcoke
- Biomass
- Pyrolysis oil

Information Generated:
- Syngas Compositions
- Carbon Conversion Rates
- Specific O_2 Consumption
- Optimized Gasification Temperatures
- Slag Composition
- Waste Water and Soot Compositions

Results used for:
- Research and development
- Project development support
 - Design input
 - Permitting support
Next Steps
R&D Focus Areas

- Gasifier Scale-up
- Partial quench with heat recovery for IGCC applications
- Biomass feedstocks
- Higher operating pressures with CO₂ carrier gas

Objective is to improve plant economics for a range of application
SGT6-5000F for IGCC Applications

Combustion System
New combustion system for IGCC based on existing Siemens Diffusion Flame technology

Casing
Use existing access port for air extraction / integration purposes

Auxiliary Systems
Fuel handling auxiliaries and engine control system modified for IGCC application

Testing with high H_2 syngas completed
Siemens – DOE Advanced H2 Turbine Program
Technology Development is Key to Meeting Program Goals

- IGCC Plant
 - Improved Efficiency
 - Fuel Flexibility
 - NG, Syngas, H2
 - Low Emissions
 - Reduction in Plant Cost $/KW
 - CO2 Sequestration Ready

- Engine
 - Firing Temperature
 - Exhaust Temperature
 - Pressure Ratio
 - Mass Flow
 - Fuel Dilution
 - ASU Integration

- Combustion
 - Modeling
 - Technologies
 - Rig Testing
 - Turbine
 - Aerodynamics
 - Cooling and Leakage
 - Compressor
 - Aerodynamics
 - Operational Flexibility

- Materials
 - TBC & Bondcoats
 - Alloys
 - Fabricated Airfoils

- Sensors
 - Emissions and Fuel Sensors
 - TBC Monitoring
 - Tip Clearance Monitoring

Copyright © Siemens Energy, Inc. 2008. All rights reserved.
Active involvement by OEM after the commercial operation date can help improve plant availability and reliability in the early years of operation.
Conclusions

Global demand for gasification is still strong
- Chemicals / SNG
- Transportation liquids
- IGCC + CCS

Better technology will provide more options and improved plant economics
- Today’s F class turbines are ready for high H₂ syngas
- Better gasification technologies being developed based on lessons learned allowing the use of lower rank coals
- H class gas turbine technology being developed for IGCC + CCS

OEM business model well accepted in market

Siemens is leveraging its 150 years of OEM and 45+ years of gasification know-how to develop gasification based solutions for tomorrow
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.