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Objectives

Develop Nutrient Solutions
Extend work on Illinois Basin
Initiate work on San Juan Basin

Optimize Methods of Delivery
Explore hydraulic fracturing for improved sweep
Define longevity of fracture treatment
Permeability evolution - nutrient delivery & CH, productivity

Evaluate Potential Improvement

Synthesize Response
Microbiology - improved productivity
Geomechanics - delivery and longevity

Design Field Experiment
Define/refine key questions
Identify key location
Identify unique tools/methods

g3.ems.psu.edu



A Scaling Study of Microbially-Enhanced Methane Production from Coal
(MECBM): Optimizing Nutrient Delivery for Maximized Methane Production

Penn State (Derek Elsworth and Shimin Liu)
SIU-Carbondale (Yanna Liang and Satya Harpalani)

Task 2 - Developing Nutrient Solutions for Sites #1 and #2 (SIV)
Subtask 2.1 - Characterizing chemical compositions of formation waters from site #1 and #2
Subtask 2.2 - Characterizing microbial composition of formation waters from site #2
Subtask 2.3 - Developing nutrient recipes for site #2



Rationale for Task 2

1. The nutrient solution we have developed for IL
coal so far is tap water based without
considering composition of the formation water.

2. For this project, we will test nutrient recipes
based on the exact composition of the formation
water at the two sites.

3. Composition and structure of the microbial
community at the SJ basin is unknown.



Task 2: Accomplishments

L"!l';"!“ IEANANRNNS

1. Formation water collection T =
Two trips: IL basin: 10/14/2015 ' '
SJ basin: 10/23-27/2015

Procedure:

1) Water samples were added to containers containing: Na,S (1
mM) and resazurin (2 mg/l).

2) During transportation, containers were kept on ice.

3) Upon arrival in the lab, part of water was filtered to collect
microbial cells, part was centrifuged to obtain concentrated
cells. One half gallon was sent for chemical analyses. All the
others were stored in a freezer (-20°C) directly.

Results:

1) 200 frozen stocks (-80°C) of microbial community for each site.
2) 10 gallon of water frozen (-20°C) for each site.
3) Active cultures from each site are growing in our lab.



Task 2: Accomplishments- cont.

2. Chemical analysis

Parameter Unit  IL basin SJ basin
Temperature (cC) 25-32 41-44
pH 7.65 8.19
Free ammonia mg/l 0.012 0.23
Total ammonia mg/I 9.05 1.78
Total Nitrogen-N mg/I <5.0 24
COD mg/l 650 2497
H,S mg/I 431 33
Fluoride mg/l 1.8 4
Nitrite mg/l <0.5 <0.5
Nitrate mg/l <0.5 0.2
Phosphate mg/l <0.75 <0.75
Total phosphate-P mg/l <5.0 0.171
Sulfate mg/l <0.75 <0.75
Chloride mg/l 21665 161
Iron mg/l 0.3 1.11
Total dissolved organic carbon  mg/I 0.44 1.15
Alkalinity as CaCO3 mg/l 400 1280
Heavy metals ug/l Pending  Pending

3. Microbial analysis

1. DNA was extracted from water samples from SJ basin.

2. Samples of DNA with good concentration and quality were sent for
sequencing.



Task 2: Accomplishments- cont.
4.Active cultures in the Tab
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Fig. Cultures developed from frozen stocks from two sites. For IL basin, the
microcosms contained: IL coal + one nutrient solution + cells and incubated at 28°C.
For SJ basin, the microcosms contained: SJ coal + SJ formation water + cells and

incubated at 43°C. YE: yeast extract, TP: trypticase peptone. A: total gas volume:
B: methane content.
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Task 3 - Investigating Methane Productivity in a Core Holder Simulating In-Situ Conditions (SIV)
Subtask 3.1 - Evaluating methane yield from the core holder operated under fed-batch conditions
Subtask 3.2 - Evaluating methane yield from core holders operated under continuous flow modes
Subtask 3.3 - Evaluating properties of coal after bioconversion



Rationale for Task 3

1. For fractured coal, we need to understand how
often nutrients should be provided under in situ
conditions and how methane yield can be
affected by different fracturing.

2. Comparing methane yield between setups where
nutrients are fed intermittently vs. continuously.

3. Understand changes made to coals at the two
sites due to biogasification.



Future work

Task 2

Subtask 2.2 - Analyzing DNA sequencing data and
understanding microbial composition of formation waters
from site #2

Subtask 2.3 - Developing nutrient recipes for site #2

Task 3 - Investigating Methane Productivity in a Core Holder
Simulating In-Situ Conditions (Satya, Yanna)

Subtask 3.1 - Evaluating methane yield from the core
holder operated under fed-batch conditions

Subtask 3.2 - Evaluating methane yield from core holders
operated under continuous flow modes

Subtask 3.3 - Evaluating properties of coal after
bioconversion
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Task 4 - Characterizing Hydraulic Fracturing for Improved Bio-Gasification (PSU)
Subtask 4.1 - Understanding hydraulic fracture characteristics
Subtask 4.2 - Quantifying loss of permeability by proppant embedment and fracture diagenesis
Subtask 4.3 - Developing models for field-scale permeability evolution of hydraulic fractures



Rationale for Task 4

1. One method to effectively sweep the entire
reservoir is to use hydraulic fracturing.

If we do this, we need to understand:

1

2.
3.
4,

What will be the dimensions of the hydraulic fractures?
What will be the permeability - with proppants?

How will this permeability change with time?

How will permeability change away from the fracture?



Hydraulic Fracturing
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Results for Shales

Stress-dependent
failure modes
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Proppant Embedment - Measurements
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Proppant Embedment - Analysis

White light interferometry
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Task 5 - Determining In Situ Permeability Evolution (PSU)
Subtask 5.1 - Quantifying permeability evolution with nutrient delivery and microbial growth
Subtask 5.2 - Quantifying gas recovery after microbial growth
Subtask 5.3 - Developing models for permeability evolution in the reservoir



Rationale for Task 5

1. Delivery of nutrients is dependent on changes in
permeability with time

We need to understand:
1. What is the initial permeability of coal?

2. How does this permeability change with nutrient delivery?
1. Duration
2. Concentration
3. Gas production

3. How does gas recovery change with nutrient delivery - in situ?



Multi-Porosity Multi-Permeability and Multi-Scale Medium
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Key Mechanistic Features [2] - Permea};ﬂ%

Permeability Model:
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Experimental Investigation
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Ensemble Response
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Permeability Evolution During Sweep Experiments - Dry
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Permeability kﬂfJ

Permeability Evolution During Sweep Experiments - Wet
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(MECBM): Optimizing Nutrient Delivery for Maximized Methane Production
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Task 6 - Define the Viability of Bio-Gasification (MECBM) Systems (All)
Subtask 6.1 - Define upscaled bio-gasification productivity for field implementation
Subtask 6.2 - Define timescales and bio-stimulation yields of prototypical field experiments
Subtask 6.3 - Complete preliminary economic analysis



Rationale for Task 6

1. How do the gas production magnitudes from lab-
batch reactors scale to field-scale?

We need to understand:

1. What are the key microbial factors influencing gas-yield?
1. Nutrient composition/type?
2. Rate of supply?
3. Duration of supply?

2. How are these factors aided by engineering?
1. Hydraulic Fracturing versus no-HF?
2. Dimensioning of fracture and complexity?
3. Longevity of fractures?
4. Evolution of permeability?

3. What are key measurements needed in a field project? Field-
scale influences and scalability
1. Nutrient delivery - key parameters?
2. Gas recovery - key parameters?
3. Roles of fracturing and field permeability evolution in these?
4. Experimental design to probe these influences.



Project Structure and Management Plan

Task 2 - Developing Nutrient Solutions for Sites #1 and # 2 (SIU - Liang/Harpalani)
Subtask 2.1 - Characterizing chemical compositions of formation waters from site #1 and #2
Subtask 2.2 - Characterizing microbial composition of formation waters from site #2
Subtask 2.3 - Developing nutrient recipes for site #2
Task 3 - Investigating Methane Productivity in a Core Holder Simulating In-Situ Conditions (SIU - Harpalani/Liang)
Subtask 3.1 - Evaluating methane yield from the core holder operated under fed-batch conditions
Subtask 3.2 - Evaluating methane yield from core holders operated under continuous flow modes
Subtask 3.3 - Evaluating properties of coal after bioconversion
Task 4 - Characterizing Hydraulic Fracturing for Improved Bio-Gasification (PSU - Elsworth/Liu)
Subtask 4.1 - Understanding hydraulic fracture characteristics
Subtask 4.2 - Quantifying loss of permeability by proppant embedment and fracture diagenesis
Subtask 4.3 - Developing models for field-scale permeability evolution of hydraulic fractures
Task 5 - Determining In Situ Permeability Evolution (PSU - Liu/Elsworth)
Subtask 5.1 - Quantifying permeability evolution with nutrient delivery and microbial growth
Subtask 5.2 - Quantifying gas recovery after microbial growth
Subtask 5.3 - Developing models for permeability evolution in the reservoir
Task 6 - Define the Viability of Bio-Gasification (WECBM) Systems (All)
Subtask 6.1 - Define upscaled bio-gasification productivity for field implementation
Subtask 6.2 - Define timescales and bio-stimulation yields of prototypical field experiments
Subtask 6.3 - Complete preliminary economic analysis
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Project Schedule

Schedule of Tasks and Milestones

Year 1

M1

M2

M3 |M4| M5

M6

M7AM38

M9 M10(M1]

M12

Q1

Q2

Q3

Y1

Task 1: Project Management and Planning (PSU & SIUC)

Task 2: Developing Nutrient Solutions for Sites #1 and # 2 (SIUC)
2.1 Characterizing chemical compositin of formation waters for sites #1 and #2
2.2 Characterizing microbial composition of formation waters from site #2
2.3 Developing nutrient recipes for site #2

e

..............................

Task 3: - Investigating Methane Productivity in a Core Holder Simulating In-Situ Conditions (SIUC)
3.1 Evaluating methane yield from the core holder operated under fed-batch
3.2 Evaluating methane yield from core holders operated under continuous mode
3.3 Evaluating properties of coal after bioconversion

.......

......................

Task 4: Characterizing Hydraulic Fracturing for Improved Bio-Gasification (PSU)
4.1 Understanding hydraulic fracture characteristics
4.2 Quantifying loss of permeability by proppant embedment and fracture diagenesis
4.3 Developing models for field-scale permeability evolution of hydraulic fractures

Task 5: Determining In Situ Permeability Evolution (PSU)
5.1 Quantifying permeability evolution with nutrient delivery and microbial growth
5.2 Quantifying gas recovery after microbial growth
5.3 Developing models for permeability evolution in the reservoir

B3

Task 6: Define the Viability of Bio-Gasification (MECBM) Systems (PSU & SIUC)
6.1 Define upscaled bio-gassification productivity for field implmentation
6.2 Define timescales and bio-stimulation yields of prototypical field experiments
6.3 Complete preliminary economic analysis

Deliverables - Quarterly and Final Reports
Briefings/Technical Presentations
Group meetings

............................................................................................
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