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Outline 

Introduction: Zeolite Membranes from nanosheets and 2-dimensional zeolites 
 
Techno-economic Evaluation  
 
Exfoliation Studies 
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Stability Results 
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Typical micrometer-sized zeolite crystals 

2nm 

Zeolite ZSM-5 (MFI) 
KOKOTAILO, GT; LAWTON, SL; OLSON, DH; et al. Nature, 272(5652), 437-438 (1978) 
FLANIGEN, EM; BENNETT, JM; GROSE, RW; et al. Nature 271(5645), 512-516 (1978) 

0.5 µm 
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IZA approved framework structures: 

•  Framework Type Code (FTC):ABW ACO AEI AEL AEN AET AFG AFI AFN AFO AFR 
AFS AFT AFX AFY AHT ANA APC APD AST ASV ATN ATO ATS ATT ATV 
AWO AWW BCT *BEA BEC BIK BOF BOG BPH BRE BSV CAN CAS CDO CFI CGF 
CGS CHA -CHI -CLO CON CZP DAC DDR DFO DFT DOH DON EAB EDI EMT 
EON EPI ERI ESV ETR EUO EZT FAR FAU FER FRA GIS GIU GME GON GOO HEU 
IFR IHW IMF ISV ITE ITH ITR ITW IWR IWS IWV IWW JBW JRY KFI LAU LEV 

LIO -LIT LOS LOV LTA LTF LTL LTN MAR MAZ MEI MEL MEP MER MFI MFS 

MON MOR MOZ *MRE MSE MSO MTF MTN MTT MTW MWW NAB NAT NES 
NON NPO NSI OBW OFF OSI OSO OWE -PAR PAU PHI PON RHO -RON RRO 
RSN RTE RTH RUT RWR RWY SAO SAS SAT SAV SBE SBN SBS SBT SFE SFF 
SFG SFH SFN SFO SFS SGT SIV SOD SOF SOS SSF SSY STF STI *STO STT STW 
-SVR SZR TER THO TOL TON TSC TUN UEI UFI UOS UOZ USI UTL VET VFI 
VNI VSV WEI -WEN YUG ZON 	
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Control of Preferred Orientation and Grain Boundary Structure 

Lai Z., Bonilla G., Diaz I., Nery J.G., 
Sujaoti K., Amat M., Kokkoli E.,  
Terasaki O., Thompson R.  
Tsapatsis M. and Vlachos D.G.  
Science 300:(5618), 456-460 (2003)  
Lai Z., Nikolich J.P., Tsapatsis M.  
Advanced Functional Materials 14:
(7), 716-729 (2004) 

Choi J., Ghosh S., Lai Z. 
Tsapatsis M. Angew. Chem. Int. Ed. 
45, 1154-1158 (2006)  

Lovallo M.C. and Tsapatsis M. 
AIChE Journal, 42(11), 3020-3029(1996)  
 
Boudreau L. and Tsapatsis M. Chemistry 
of Materials, 9(8), 1705-1709 (1997)  
 
Gouzinis A. and Tsapatsis M.  
Chemistry of Materials 10,  
2497-2504 (1998)  
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Separation performance depends strongly on microstructure: Grain orientation and Grain Boundaries 
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Choi J., Jeong H.K., Snyder M.A., Stoeger J.A, Masel R.I., Tsapatsis M. Science 325(5940), 590-594 (2009) 
 
W. Fan, M.A. Snyder, S. Kumar, PS Lee, W. C. Yoo, A. V. McCormick, R. L. Penn, A. Stein and M. Tsapatsis,  
Nature Materials, 7(12), 984-991(2008) 
Lee P.-S., Zhang X., Stoeger J.A., Malek A., Wei F., Sandeep K., Yoo W.C., Al Hashimi S., Penn R.L. Stein A. 
Tsapatsis M. Journal of the American Chemical Society 133(3), 493-502 (2011)  

Xomeritakis G., Gouzinis A., Nair S., He M., Overnay R., Okubo T., Tsapatsis M. Chemical Engineering Science 
54, 3521-3531 (1999) 

RTP: 
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Hierarchical manufacturing of zeolite films 

Crystal Structure 
(nm) 

Shaped Crystal  
(10-100nm) 

Oriented 
Monolayer of 

Crystals 

Intergrown 
Film 

For a Review:  
Mark A. Snyder, Michael Tsapatsis,  
Angew. Chem. Int. Ed. 2007, 46, 7560–7573 
 
For extension to MOFs: 
Ranjan and Tsapatsis 
Chemistry of Materials  
21(20), 4920-4924 (2009)  
 
Yoo, Yeonshick; Lai, Zhiping; Jeong, Hae-Kwon 
MICROPOROUS AND MESOPOROUS MATERIALS 123, 1-3, 100-106   (2009)   
 
And ZIFs 
Pan, Yichang; Li, Tao; Lestari, Gabriella; Lai, Zhiping JOURNAL OF MEMBRANE SCIENCE, 390, 93-98 (2012) 
Andrew J. Brown, Dr. J. R. Johnson, Megan E. Lydon, William J. Koros, Christopher W. Jones, Sankar Nair ANGEWANDTE 
CHEMIE-INTERNATIONAL EDITION, 51, 10615-10618 (2012)   
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W. J. Roth, C. T. Kresge, J. C. Vartuli, M. E. Leonowicz, A. S. Fung, S. B. McCullen, in Stud. Surf. Sci. Catal., Vol. 94 (Eds.: H. K. Beyer, H. G. 
Karge, I. Kiricsi, J. B. Nagy), Elsevier, Amsterdam, 1995, pp. 301-308. 

Pillaring 
and 

Calcination 

MWW 

MCM-36 MCM-22 (P) 

MCM-22 (P) 
(swelled) 

Swelling  

d~2.5 nm d~5.0 nm 

C16TMAOH TEOS 

Layered zeolites: 
first introduced by Mobil in 1990’s for pillared MWW 
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Layered zeolites with 6-MR pores 
c 

a 

[001] 
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MWW Nanosheet/Mesoporous Silica Composite Membranes 

11 
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Selective membrane demonstrated (from 2008 proposal) 

13 



Chemical Engineering & Materials Science UNIVERSITY OF MINNESOTA 

Proposed concept (2008) 

14 
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Outline 

Introduction: Zeolite Membranes from Nanosheets and 2-dimensional zeolites 
 
Techno-economic Evaluation  
 
Exfoliation Studies 
 
Membrane Preparation Approaches 
 
Permeation and Stability Results 
 
Conclusions and Outlook 
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Systems Modeling: Objectives and Approach 
Develop a WGS membrane reactor (MR) model 

Integrate MR model into IGCC system model 

Analyze effect of reactor design and membrane characteristics on integrated 
plant performance 

•  achieve DOE R&D target goal of 90% CO2 capture (1),(2) 
•   satisfy stream constraints for CO2 capture and gas turbine fuel (H2 rich)(3) 
•  quantify power generation 

Perform optimization studies and techno-economic analysis for integrated 
plant 

Received input from DOE/NETL personnel (John Marano and Jared Ciferno) 

(1) Marano, Report to DOE/NETL (2010) 
(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 
(3) Lima et al., Ind. Eng. Chem. Res. 51, 5480-5489 (2012) 

16 
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MR Modeling Assumptions and Simulation Set Up  

•  Assumptions 

•  1-dimensional shell and tube reactor 

•  catalyst packed in tube side 

•  thin membrane layer placed on surface of tube wall 

•  sweep gas flows in shell side 

•  plug-flow operation 

•  constant temperature and pressure 

•  steady-state operation 

•  ideal gas law 

"   Flow configurations 

"   co-current 

v  counter-current 

"   Simulation conditions  

"   catalyst type and reaction rate (2) 

"   reactor dimensions (lab)  

"   consistent with IGCC specifications 

"   Model used to perform simulation and 
optimization studies (3) 

(1) Marano, Report to DOE/NETL (2010)  
(2) Choi and Stenger, J. Power Sources 124, 432-439 (2003) 
(3) Lima et al., Ind. Eng. Chem. Res. 51, 5480-5489 (2012) 

17 

Composition (1): 
CO = 24.43 % 
H2O = 48.86 % 
CO2 = 5.68 % 
H2 = 19.33 % 
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Counter-current Simulation Results: Concentration Profiles 

"   Simulation conditions 

"   MR length of 30 cm 

"   QH2 = 0.1 mol/(s.m2.atm) 

"   SH2/all = 1000 

"   steam as sweep gas 

18 
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Counter-current Simulation Results: Changing Membrane Selectivity 

Membrane Reactor 
Parameter 

Value [%] 
(SH2/all = 1000) 

Value [%]  
(SH2/all = 100) 

Value [%] 
(SH2/all = 10) 

Target 
[%] 

99.84	
 99.34	
 95.02	
 98	


99.06	
 99.00	
 97.21	
 95	


98.97	
 90.15	
 29.07	
 90	


96.31	
 96.62	
 98.30	
 95	


44.27	
 43.14	
 34.05	
 44	


0.66	
 0.51	
 0.01	
 (≤)2	
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IGCC Plant Modeling Assumptions (MATLAB) 

20 

"   Simplified systems-level model of entire process (ASU, gasifier, turbines, 
and heat exchangers) in MATLAB	


"   Assumptions: few basic components, lumped compartments in gasifier/
turbines, static heat exchanger models (1)	


"   Developed model validated using published simulation data (1)	


(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)  
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Integration of MR into IGCC Plant (MATLAB) 

"   Scale up MR model at steady state 

"   MR integration downstream of gasifier (1),(2) 

"   Effect on turbines/heat exchangers 

"   Steam integration for MR utilization 

21 

(1) Marano and Ciferno, Energy Procedia 1, 361-368 (2009) 
(2) Bracht et al., Energy Convers. Mgmt 38, S159-164 (1997) 
(3) Lima et al., Submitted for Publication (2014) 

"   Simulation studies performed (3) 

"   Novel optimization problem formulated (3) 

"   minimize cost of membrane as function of 
surface area 

"   determine optimal operating point that 
satisfies all constraints 
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Integration of MR into IGCC Plant: Simulation Results 

 

"   Performance variables (2) 

"   carbon capture 

"   power generation 

22 

(1) Jillson et al., J. Proc. Cont. 19, 1470-1485 (2009)  
(2) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
(3) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011) 

"   Process simulation conditions (1),(2),(3)	


"   Pt ≈ 53 atm, Ps ≈ 26 atm	


"   Tt ≈ 390oC, Ts ≈ 390oC 	

"   SH2/all 

 = 1000, QH2 = 0.2 mol/(s.m2.atm)	


"   Am  = 6800 m2	


=
2CO

carbon captured
C = 98.54%

carbon in feed

= 614.07 MWW
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IGCC-MR Simulation Results: Changing Membrane Characteristics 

IGCC Performance	


Variable	


Nominal	


(SH2/all = 1000, 	


QH2 = 0.2)	


Case I 	


(SH2/all = 100, 	


QH2 = 0.2)	


Case II 	


(SH2/all = 
1000, 	


QH2 = 0.1)	


98.54	
 85.97	
 99.35	


614.07	
 622.95	
 550.07	


23 
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IGCC-MR Differential Cost Analysis 

24 

(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
(2) Turton et al., Analysis, Synthesis and Design of Chemical Processes (2012) 

"   Cost comparison between IGCC with and without MR 
"   Same amount of coal and power generation (≈ 615 MW) 
"   Cost differences 

"   larger ASU (IGCC) (1): ≈  $290 million/30 years 
"   steam and gas turbines differences (IGCC) (1): ≈ $40 million/30 years; ≈ $117 

million/30 years (with oxy-combustion corrections); 
"   extra heat exchangers (IGCC-MR) (2): $3.78 million/30 years 
"   added MR with Am ≈ 5000 m2 (IGCC-MR nominal): ≈ $5-50 million/lifetime	
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IGCC-MR Differential Cost Analysis 

25 

(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
(2) Turton et al., Analysis, Synthesis and Design of Chemical Processes (2012) 
(3) Lima et al., Submitted for Publication (2014) 

"   Cost comparison between IGCC with and without MR 
"   Same amount of coal and power generation (≈ 615 MW) 
"   Cost differences 

"   larger ASU (IGCC) (1): ≈  $290 million/30 years 
"   steam and gas turbines differences (IGCC) (1): ≈ $40 million/30 years; ≈ $117 

million/30 years (with oxy-combustion corrections); 
"   extra heat exchangers (IGCC-MR) (2): $3.78 million/30 years 
"   added MR with Am ≈ 5000 m2 (IGCC-MR nominal): ≈ $5-50 million/lifetime	


"   Calculate MR cost to break even in a 30 
year period	


"   Results based on present value of 
annuity calculation (3) – nominal case	


	


Lifetime	


[year]	


Cost 	


[$/m2]	


Cost Corrected	


[$/m2]	


1	
 5,840	
 7,210	


2	
 11,680	
 14,420	


3	
 17,520	
 21,630	
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IGCC-MR Differential Cost Analysis 

26 

(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
(2) Turton et al., Analysis, Synthesis and Design of Chemical Processes (2012) 
(3) Lima et al., Submitted for Publication (2014) 

"   Cost comparison between IGCC with and without MR 
"   Same amount of coal and power generation (≈ 615 MW) 
"   Cost differences 

"   larger ASU (IGCC) (1): ≈  $290 million/30 years 
"   steam and gas turbines differences (IGCC) (1): ≈ $40 million/30 years; ≈ $117 

million/30 years (with oxy-combustion corrections); 
"   extra heat exchangers (IGCC-MR) (2): $3.78 million/30 years 
"   added MR with Am ≈ 4700 m2 (IGCC-MR Case I): ≈ $4.7-47 million/lifetime	


"   Calculate MR cost to break even in a 
30 year period	


"   Results based on present value of 
annuity calculation (3) – Case I	


	


Lifetime	


[year]	


Cost 	


[$/m2]	


Cost Corrected	


[$/m2]	


1	
 6,170	
 7,620	


2	
 12,340	
 15,240	


3	
 18,510	
 22,860	
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IGCC-MR Differential Cost Analysis 
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(1) Haslbeck et al., Baseline Report to DOE/NETL (2010) 
(2) Turton et al., Analysis, Synthesis and Design of Chemical Processes (2012) 
(3) Lima et al., Submitted for Publication (2014) 

"   Cost comparison between IGCC with and without MR 
"   Same amount of coal and power generation (≈ 615 MW) 
"   Cost differences 

"   larger ASU (IGCC) (1): ≈  $290 million/30 years 
"   steam and gas turbines differences (IGCC) (1): ≈ $40 million/30 years; ≈ $117 

million/30 years (with oxy-combustion corrections); 
"   extra heat exchangers (IGCC-MR) (2): $3.78 million/30 years 
"   added MR with Am ≈ 7300 m2 (IGCC-MR Case II): ≈ $7.3-73 million/lifetime	


"   Calculate MR cost to break even in a 
30 year period	


"   Results based on present value of 
annuity calculation (3) – Case II	


	


Lifetime	


[year]	


Cost 	


[$/m2]	


Cost Corrected	


[$/m2]	


1	
 3,910	
 4,860	


2	
 7,820	
 9,720	


3	
 11,730	
 14,580	
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Integration of MR into IGCC Flowsheet (Aspen) 

"   MR integration into Aspen flowsheet	


"   used available baseline IGCC model (MITEI) (1)	


"   MR model implemented in Aspen Custom Modeler	


"   model incorporated into IGCC baseline model	


"   Simulation & techno-economic analysis (Ongoing)	


"   feasibility of replacing current technology (CO shift followed by physical 
absorption) for CO2 capture	


"   achieve DOE target goal for CO2 capture and satisfy stream constraints	


28 

(1) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011)  
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Integration of MR into IGCC Flowsheet (Aspen) 

"   MR integration into Aspen flowsheet	


"   used available baseline IGCC model (MITEI) (1)	


"   MR model implemented in Aspen Custom Modeler	


"   model incorporated into IGCC baseline model	


"   Simulation & techno-economic analysis (Ongoing)	


"   feasibility of replacing current technology (CO shift followed by physical 
absorption) for CO2 capture	


"   achieve DOE target goal for CO2 capture and satisfy stream constraints 	


29 

(1) Field and Brasington, Ind. Eng. Chem. Res. 50, 11306-11312 (2011)  
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Modeling Conclusions 
•  Conclusions	


•  MR model developed and integrated into IGCC process model in MATLAB	


•  Simulation and optimization studies for IGCC-MR plant performed	


•  simulation results indicated successful nominal case	


•  novel constrained optimization problem formulated and solved	


•  Techno-economic assessment of IGCC-MR process completed (MATLAB)	


•  MR cost analysis showed break even costs within feasible range	


•  Ongoing work (Aspen)	


•  IGCC-MR base case flowsheet developed	


•  Preliminary simulation studies and  techno-economic analysis indicated MR costs 
within the feasible range	


30 
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Outline 

Introduction: Zeolite Membranes from nanosheets and 2-dimensional zeolites 
 
Techno-economic Evaluation  
 
Exfoliation Studies (Key issue: exfoliation with structure preservation) 
 
Membrane Preparation Approaches 
 
Permeation and Stability Results 
 
Conclusions and Outlook 
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Exfoliated zeolite nanosheets by “melt-blending” 

32 

200 nm 

S. Maheshwari, E. Jordan, S. Kumar, F. S. Bates, R. L. Penn, D. F. Shantz, M. Tsapatsis, J. Am. Chem. Soc. 2008, 130, 1507-1516;  
 “Layered Zeolite materials and Methods Related Thereto” Tsapatsis M., Maheshwari S., Koros W. and Bates F.S., US Patent 8,501,068 B2 (2013) 
 
 

MWW 

Polymer Layered zeolite & 
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Dissolu'on	  in	  toluene	  

	  
Dissolved	  	  

nanocomposite	  
(ρ=0.87)	  

Cholorobenzene	  	  
(ρ	  =	  1.10)	  

40000g	  

(ρ	  =	  0.82)	  

(ρ	  =	  1.10)	  

(ρ	  =	  1.33)	  

(ρ	  =	  1.48)	  

12000g	  

Density Gradient Centrifugation DGC  
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2-dimensional MWW obtained by MB followed by DGC  

K. Varoon (Agrawal), X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C.-Y. Sung, M. Cococcioni, L. 
F. Francis, A. V. McCormick, K. A. Mkhoyan, and M. Tsapatsis. Science 2011, 334, 72. 
 
Kumar Varoon Agrawal, Topuz B., Navarro M., Nguenkam K., Elyassi B., Francis L.F., Tsapatsis M. AIChE Journal 59(9), 3459-3467 (2013) 
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Exfoliation of Nu-6(1) and RUB-18 by melt compounding 

Exfoliated NU-6(1) RUB-18 
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Other exfoliation approaches explored: 
Ball milling, solution-based exfoliation with ultrasonication,  
gallery functionalization and rapid thermal processing 
 
MB and DGC remains best method for exfoliation-yield and  
structure preservation 
 
Other potentially hydrogen-selective layers  
were exfoliated by this approach 
 
 
 
 

MB&DGC vs. other exfoliation approaches 
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Outline 

Introduction: Zeolite Membranes from nanosheets and 2-dimensional zeolites 
 
Techno-economic Evaluation  
 
Exfoliation Studies 
 
Membrane Preparation Approaches 
 
Permeation and Stability Results 
 
Conclusions and Outlook 
 
  



Chemical Engineering & Materials Science UNIVERSITY OF MINNESOTA 

Flat alumina support (smooth surface) 

38 
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Flat silica supports  
(developed under ARPAE support) 
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Coating with 1micron Stober 4wt% in ethanol 
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Coat with 350nm Stober 5wt% in ethanol 
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Coat with 50nm Stober in ethanol 
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Morigami, Y; Kondo, M; Abe, J; Kita, H; Okamoto, K 
SEPARATION AND PURIFICATION TECHNOLOGY 
25, 251-260 (2001) 
 
Caro, Juergen; Noack, Manfred 
MICROPOROUS AND MESOPOROUS MATERIALS   
115, 215-233 (2008) 
 
Kanezashi, Masakoto; O'Brien, Jessica; Lin, Y. S. 
JOURNAL OF MEMBRANE SCIENCE 
286, 213-222 (2006)   
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1	  μm

Oriented	  film	  by	  simple	  filtra'on	  
1.  Simple filtration of the nanosheet suspension through a porous support. 

2.  Due to their large lateral size, nanosheet film does not penetrate the 200-nm 
wide pores of the support.	  

MWW	  Nanosheet	  Coa'ng	  
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Nanosheet coating on alumina tubes 
Support Glaze on tube 

ends 

Leak areas due to the contraction of 
nanosheet film 
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Objective: c-oriented MWW membranes   
 

Secondary growth methods for MWW 
	


 
 

Gel-free growth : 
with impregnated SDA 

 
	


 
 

Gel-free growth: 
MWW/MFI mixed matrix 

membrane 
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Pre-crystallization of the gel 
and secondary growth 

 
	


1	  μm
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Outline 

Introduction: Zeolite Membranes from nanosheets and 2-dimensional zeolites 
 
Techno-economic Evaluation  
 
Exfoliation Studies 
 
Membrane Preparation Approaches 
 
Permeation and Stability Results 
 
Conclusions and Outlook 
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Summary of permeation results 
Target at 500oC 
H2/CO2 = 80  H2/N2 = 600 H2-permeance=0.06-0.12 mol/m2-s-atm 
 
Achieved at 350oC (sealing problems did not allow higher T tests;  
current hydrothermal stability prohibits use above 350oC) 
H2/CO2 = 30  H2/N2 = 150 H2-permeance=0.05 mol/m2-s-atm 
[~300GPU or ~ 100 SCFH/ft2-100psi ΔP] 
 
Membrane performance deteriorates by steaming at 350oC 
 
Water and CO permeance have not been investigated. 
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Steam stability 

•  Temperature: 350oC (and 600 oC) 	


•  Pressure: 10 bar (95% steam, 5% 
nitrogen)	


•  Samples were analyzed in 21 days 
intervals for 84 days	


Steam stability of  MCM-22, 
ITQ-1, and SiCl4-treated ITQ-1 
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Gel-free growth method for MWW with HMI/TMAdaOH as the SDA 
 

Substrates: Silica and alumina 
 
 

Coating: MWW nanosheets. Calcination 
 
 

Impregnation for 40s in OSDA aq. soln.: 
1)  HMI (Conc. = 0.1 M – 1 x 10-4 ) 
2)  TMAdaOH (Conc. 0.025 M) 

 
 

Hydrothermal treatment temperatures: 190°C – 75°C 
Growth time: 6h – 48h. Calcination. 
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Treating ITQ-1 with SiCl4 to heal structural defects 

Beyer et. al., J . Chem. Soc., Faraday Trans. 1, 1985, 81, 
2889-2901. 

450oC for 40 min 

Si

Si

Cl

Cl Cl

Cl bed	  of	  zeolite

fritted	  quartz	  disk

quartz	  wool

Flow	  of	  nitrogen	  saturated	  with	  
SiCl4 vapor	  at	  room	  temperature	  
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XRD of ITQ-1 and ITQ-1 treated with SiCl4 at 350oC  

§  SiCl4 treatment is effective in improving the hydrothermal stability of ITQ-1 
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TEM images of ITQ-1 before and after 84 days of steaming 

ITQ-‐1 Steamed ITQ-‐1

200	  nm 200	  nm20	  nm 20	  nm

ITQ-‐1 Steamed ITQ-‐1
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TEM images of healed ITQ-1 before and after 84 days of steaming 

200	  nm 200	  nm

Before steaming After steaming

20	  nm 20	  nm

After steamingBefore	  steaming	  
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29Si MAS NMR of ITQ-1 and SiCl4 treated ITQ-1 before and after steaming for 84 days 
at 350oC 

Q4 Q4 

ITQ-1 becomes amorphous 

Healed ITQ-1 shows high 
spectral resolution 
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XRD of MCM-22 steam treated at 350oC  

§   MCM-22 keeps its crystallinity. 
§   No change in crystal morphology was seen in the SEM pictures. 
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TEM images of MCM-22 before and after 84 days of steaming  

200	  nm 100	  nm

MCM-‐22 Steamed MCM-‐22

10	  nm 10	  nm

MCM-‐22 Steamed MCM-‐22
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29Si and CP/MAS NMR of MCM-22, before and after steaming at 350oC for 84 
days 

Q4 §  Higher spectral resolution 
can be seen after hydrothermal 
treatment 
§  Intensity reduction at -97 and 
-99 ppm (defect sites) 
 

σ = -0.6192Ө - 18.68 
G. Engelhardt, R. Radeglia, Chem. 
Phys. Lett. 108 (1984) 271-274. 

2012.44 -‐120.24 2013.388 -‐119.793 2012.448 -‐123.401 2024.665 2824.665
2012.44 -‐118.625 2013.388 -‐117.954 2012.448 -‐123.367 2024.665 2824.665
2012.44 -‐117.01 2013.388 -‐116.115 2012.448 -‐123.332 2024.665 2824.665
2012.44 -‐115.395 2013.388 -‐114.277 2012.448 -‐123.298 2024.665 2824.665
2012.44 -‐113.78 2013.388 -‐112.438 2012.448 -‐123.263 2024.665 2824.665
2012.44 -‐112.165 2013.388 -‐110.6 2012.448 -‐123.229 2024.665 2824.665
2012.44 -‐112.069 2013.388 -‐108.761 2012.448 -‐123.195 2024.665 2824.665
2012.44 -‐111.88 2013.388 -‐106.922 2012.448 -‐123.16 2024.665 2824.665
2012.44 -‐111.695 2013.388 -‐106.85 2012.448 -‐123.126 2024.665 2824.665
2012.44 -‐111.515 2013.388 -‐106.708 2012.448 -‐123.091 2024.665 2824.665
2012.44 -‐111.34 2013.388 -‐106.57 2012.448 -‐123.057 2024.665 2824.665
2012.44 -‐111.169 2013.388 -‐106.435 2012.448 -‐123.022 2024.665 2824.665
2012.44 -‐111.003 2013.388 -‐106.304 2012.448 -‐122.988 2024.665 2824.665
2012.44 -‐110.841 2013.388 -‐106.177 2012.448 -‐122.953 2024.665 2824.665
2012.44 -‐110.684 2013.388 -‐106.054 2012.448 -‐122.919 2024.665 2824.665
2012.44 -‐110.531 2013.388 -‐105.934 2012.448 -‐122.885 2024.665 2824.665
2012.44 -‐110.383 2013.388 -‐105.818 2012.448 -‐122.85 2024.665 2824.665
2012.44 -‐110.24 2013.388 -‐105.705 2012.448 -‐122.816 2024.665 2824.665
2012.44 -‐110.101 2013.388 -‐105.597 2012.448 -‐122.781 2024.665 2824.665
2012.44 -‐109.967 2013.388 -‐105.492 2012.448 -‐122.747 2024.665 2824.665
2012.44 -‐109.837 2013.388 -‐105.39 2012.448 -‐122.712 2024.665 2824.665
2012.44 -‐109.711 2013.388 -‐105.292 2012.448 -‐122.678 2024.665 2824.665
2012.44 -‐109.591 2013.388 -‐105.198 2012.448 -‐122.644 2024.665 2824.665
2012.44 -‐109.475 2013.388 -‐105.108 2012.448 -‐122.609 2024.665 2824.665
2012.44 -‐109.363 2013.388 -‐105.022 2012.448 -‐122.575 2024.665 2824.665
2012.44 -‐109.256 2013.388 -‐104.939 2012.448 -‐122.54 2024.665 2824.665
2012.44 -‐109.153 2013.388 -‐104.859 2012.448 -‐122.506 2024.665 2824.665
2012.44 -‐109.055 2013.388 -‐104.784 2012.448 -‐122.471 2024.665 2824.665

-‐125-‐120-‐115-‐110-‐105-‐100-‐95

SteamedMCM-‐22

(∆)

Steamed
MCM-‐22

-‐125-‐120-‐115-‐110-‐105-‐100-‐95
δ (ppm	  from	  TMS)

MCM-‐22
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Steaming effect on ITQ-1 samples calcined at the lower temperature of 580oC 

0 10 20 30 40

(b)	  After	  42	  days	  of steaming	  

(c)	  After	  84	  days	  of steaming	  

(a)	  ITQ-‐1

2θ/	  °(Co Kα)

In
te
ns
ity

	  (a
.u
.)

0 10 20 30 40

(a)	  SiCl4-‐treated	  ITQ-‐1

(b)	  After	  42	  days	  of steaming	  

(c)	  After	  84	  days	  of steaming	  

2θ/	  °(Co Kα)

In
te
ns
ity

	  (a
.u
.)

XRD patterns of ITQ-1 (left, calcined at 580 oC, 4 h in air) and SiCl4-
treated ITQ-1 (right,, calcined at 580 oC, 4 h in air): before (a) and after 
42 days (b), and 84 days (c) of steaming at 350 oC and 10 barg (95% 
H2O, 5% N2).  
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N2/Ar adsorption studies of MWW structure zeolites 
	   Before	  steaming	   After	  steaming	  for	  84	  days	  

SBET	  a	  
(m2/g)	  

Vmicro
b	  

(cm3/g)	  
Vmicro

c	  	  
(cm3/g)	  	  

SBET	  a	  
(m2/g)	  

Vmicro
b	  	  

(cm3/g)	  
Vmicro	  

c	  	  
(cm3/g)	  

MCM-‐22-‐H	  
(calcined	  at	  900oC)	   490	   0.163	   0.198	   340	   0.113	   0.133	  

ITQ-‐1-‐H	  (calcined	  at	  
900oC)	   402	   0.138	   0.186	   13	   0	   0	  

S-‐ITQ-‐1-‐H	  (SiCl4-‐
treated	  ITQ-‐1)	   470	   0.160	   0.195	   110	   0.027	   0.034	  

ITQ-‐1-‐C	  (calcined	  at	  
580oC)	   550	   0.182	   0.254	   158	   0.048	   0.069	  

S-‐ITQ-‐1-‐C	  (SiCl4-‐
treated	  ITQ-‐1)	   521	   0.181	   0.239	   308	   0.103	   0.142	  

	  
a BET area from N2 adsorption isotherm. 
b Micropore volume from t-method using N2 adsorption isotherm. 
c Micropore volume using the NLDFT kernel “Ar at 87 K zeolites- silica, cylindrical pore model”. 
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XRD of patterns of Nu-6(2) zeolite:  
Steamed at 350oC and 10 bar (35% H2O in N2) for 6 Months  
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XRD of patterns of RUB-24 zeolite:  
Steamed at 350oC and 10 bar (35% H2O in N2) for 6 Months  
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On steam stability: 
MWW (and other layered zeolites) are structurally stable for months under 
intense steaming at 350 OC. 

Higher T compromises crystallinity 

(i) Presence of Al during synthesis; (ii) defect healing by SiCl4 treatment and 
(iii) lower T for 1st calcination improve stability 

Steaming improves local order and possibly hydrophobicity 

Although crystallinity is retained, nm-sized hole formation is observed and 
may lead to pinhole formation. It may explain loss of membrane 
performance after steaming. 
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Conclusions and Outlook 
•  Top down exfoliation approach and compact membrane fabrication achieved 

•  Nanosheet membranes exhibit performance close to process design targets under 
dry conditions 

•  Original hypothesis that siliceous zeolites can be steam-stable confirmed and 
several factors affecting stability were identified 

•  Membrane performance deteriorates under steaming at 350oC probably due to 
pinhole formation. 

Outlook:  

•  Improvements of steam stability possible by detail study of identified factors 

•  Process design targets achievable by improving membrane synthesis to obtain:  

•  Higher aspect ratio, defect (Si-OH) - free nanosheets 

•  Highly oriented compact membranes 
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