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To Predict Coble Creep?
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(Level of GB Disorder)
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Extending Bulk CalPhaD Methods to GBs (Prior Successful Studies)
To Predict (Coble) Creep?



Chemicals Weight(g/L)
NiSO4.6H2O 300
NiCl2.6H2O 45
H3BO3 45

Saccharine 5
Sodium Lauryl Sulfonate
(CH3(CH2)11OSO2Na)

0.25

Current Time 
(ms)

Peak
(A/cm2)

Forwards
On  5 0.4

off 15

Temperature: 65 ºC

Deposition time: 
30 min to 2h

Power Supplies
El-Sherik, et al., J of Materials  Science  30, 5743 (1995)

Preparing Nanocrystalline Ni and Ni-W Specimens 
for Mechanical Test



free-standing, mirror-like

40 m

Uniform
Crack-free

Nanocrystalline 
Ni

Cu Substrate
(dissolved 

afterwards)

Grain Size (from the Scherrer
equation) is ~18 nm. Current effort to make thicker 

specimens to fit the requirements for 
Purdue’s in-situ, high-T, mechanical 

tests.

Nanocrystalline Ni-W alloy specimens 
(up to ~50 wt. % W) specimens were 

also successfully made.  

The image of the “apple” from iPhone

Free-Standing Nanocrystalline Ni Specimens



Grain Size: 
~150 nm

~96% of the 
Theoretical Density

Sintered Nanocrystalline W Alloys

[ Vivek K. Gupta and et al., 2007 ]
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Quantum mechanical calculation of GB Strength 



Yield strength: at strain 4%,       
First peak: at strain 12%
Yield strength and first peak’s values have dependent on the Ni volume fraction.
Second peak: at strain 18%
The second peak’s values are not depend on the Ni volume fraction.
Ultimate tensile strength : strain of 12~18%
The maximum tensile strength is not affected by Ni volume fraction for the unsaturated W-Ni. 

[1] At strain of 0.18

[2] At strain of 0.12

[3] At strain of 0.04

[1]
[2]

[3]

Stress – strain relation 
(1) Unsaturated Ni - W

 time step: 5 a.u. , total 2000 steps
 cutoff energy for wavefunction : 350 eV
 Nose-Hoover thermostat : 300K, 400K, 500K, 600K
 electronic fake mass for CPMD : 400 a.u.
 number of k-points for integration over Brillouin zone : 32x32x32

Becquart and et al., 2006

Perdew and et al., 1996

Nose and Shuichi, 1984

Hoover and William, 1985

Monkhorst and Pack., 1996

Vanderbilt and David, 1990



Yield strength: at strain 4%,      
First peak: at strain 16%
Yield strength and first peak’s values have dependent on the Ni volume fraction.
Second peak: at strain 24%
The second peak’s values have the largest dependence on the Ni volume fraction.
Ultimate tensile strength : strain of 16~24%
The maximum tensile strength is not affected by Ni volume fraction for the saturated W-Ni. 

[1][2]

[3]

[1] At strain of 0.24

[2] At strain of 0.16

[3] At strain of 0.04

(2) Saturated Ni - W
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Pure W

Unsaturated

Saturated

Pure W

Saturated
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Γ Η ΝΓ
Phonon dispersion

(ξξ0)
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: Maximum tensile strength of W-Ni alloy
: Idealistic maximum tensile strength of W
: Surface energy of W
: Atomic level cohesive energy of W 

ideal
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 wg

Prediction of peak tensile strength



0.6nm
2nm

60nm

60nm

[ V. Gupta et al, 2007 ]
135 μm

t = 10 μm

80 μm

Bi-granular model

Polycrystalline model

Continuum scale model
(1) Nano-scale model

(2) Micro-scale model
[ V. Gupta et al, 2007 ]

How does this prediction apply to continuum scale fracture?



Grain Grain boundary

Crack propagation 
of GB 

4.5E-5 0.013 0.015 0.018Time-step increment

Material model of grains and GBs

[ V. Gupta et al, 2007 ]



Fracture toughness inside the GBFracture toughness in crack initiation

W AKS-W WL NI-W

200 nm GB

400 nm GB

800 nm GB

200 nm GB
400 nm GB

800 nm GB

W : Tungsten
AKS-W : Potassium doped tungsten
WL : Tungsten with 1 wt% La2O3

[ B. Gludovatz and et al., 2010 ]

Fracture toughness analysis



Effect of length-scale  :

Brittleness index estimation

0.30.03 3

B = 3.3L-1/2

WC/Co [Evan and 
Charles, 1976]

WC [Lawn and 
Marshall, 1979]

0 3 2200 6000

Nomenclature
B* brittleness index (no unit)
L lengthscale (μm)
T max. tensile strength (fracture strength)
H hardness (GPa)
Kc fracture toughness (MPa m^1/2)
t GB thickness (μm)
p Ni fraction (no unit)

L
K
HB

c 
1*  α = 3.3 for W-Ni

Brittleness index of GBs

Measurement of GB embrittlement has been obtained using the revised brittleness index.
 This provides an absolute range of qualitative measurement to describe the brittleness 
without considering the length scale limitations.



θ = 90 ̊ θ = 80 ̊ θ = 70 ̊ θ = 60 ̊ θ = 50 ̊

θ = 40 ̊ θ = 30 ̊ θ = 20 ̊ θ = 10 ̊

GB angle from -90 to 90 degree

Inter-granular failure is represented as 1
Trans-granular failure is represented as -1

Crack propagation in different angled GBs

Failure index : An index (between -1 and 1) to 
describe failure type, which can be either inter-
granular failure or trans-granular failure.

a = 4.45
b = -4.2
c = -0.00024

2c
T
TbaFI
Grain

GB 

Using the heavi-side function
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Inter-granular failure

Trans-granular failure

Trans-granular failure



[ Zbigniew Pedzich, 2012 ]

Validation and Conclusion

Perfect inter-granular failure has occurred.
Contains crack path with maximum GB angle of 67 ̊. 
GB strength property can be predicted.

According to the failure index prediction, given 
microstructure has max. tensile strength ratio between 
GB and grain as

2c
T
TbaFI
Grain

GB 

  .803.0 GrainGB TT 

For various failed morphologies of polycrystalline 
W-Ni, GB’s strength property can be predicted 
using the derived failure type criteria.
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