

Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines 27 October 2011

Jim Downs Manager – Thermal Systems Design Florida Turbine Technologies, Inc. 561-427-6250 jdowns@fttinc.com www.fttinc.com

- Why spar-shell?
- Demonstration of enabling spar-shell cooling technology in gas turbines

Background – Current state-of-the-art

- Turbine cooling technologies permit temperature of environment to exceed material capability (including melt) by wide margin
 - Front turbine stages characterized with extensive use of film cooling
 - Aft turbine stages characterized highly efficient convective cooling designs – No film cooling
 - Thermal barrier coatings used extensively throughout the turbine

Background – Current state-of-the-art

Turbine components produced In monolithic structure

- Materials: Advanced nickel-based alloys
- Casting: Directional solidification & single crystal
- Good <u>compromise</u> of thermal and structural capabilities

Advanced internal convection and film cooling

Ref: Han, J. C., Dutta, S. & Ekkad, S.V., *Gas Turbine Heat Transfer* and *Cooling Technology.*, page 20, Taylor & Francis, 2000.

Future turbine systems require increased efficiency

- Address well-known problems of global energy usage & emissions
 - CO₂ production increasingly accepted as global warming cause/contributor
- Requires increased turbine inlet temperature & pressure
 - Increased heat load
- Possible shift of working fluid
 - Reduced nitrogen, increased steam & CO₂
- Explore innovative cooling system design approaches to increase turbine efficiency by reducing required cooling flows

Alternative to existing state-of-the-art

- Enabler for advanced cooling
- Provides path for implementation of next generation materials
- Optimized thermal/structural arrangement allows increased firing temperatures and improved efficiency

Ref: U.S. Patent #7080971, "Cooled Turbine Spar Shell Blade Construction, J. W. Wilson and W. Brown, July 25, 2006.

Global benefits of spar-shell technology:

- Can be Applied to 500GW of Installed Power Generation Capacity
 - 14% of Worldwide Capacity
- Curb Emissions
 - Reduce CO₂ Emissions by 25 Million Tons/Year
- Reduce Dependence on Foreign Oil
 - Natural Gas Savings of 480 Trillion Btu/Year
 - Equivalent Oil Savings of 84 Million Barrels of Oil (4 Days of U.S. Consumption/Year)

10/27/2011

Copyright 2011, Florida Turbine Technologies, Inc. All Rights Reserved.

Spar-Shell Technology – What Is It?

Innovative design that enables 40% cooling flow reduction

- FTT sequential-impingement cooling scheme based on new insert design improves cooling (reduces cooling flow)
- Introduction of flexible, multi-piece design reduces thermal/structural fight for improved durability
- Enabler for the use of alternative, high temperature material systems

Commercialization Plan

Developing opportunities in the marketplace

Near-Term: Retrofit Into Existing GT's

- First commercial product (1st stage turbine vane): Enhance durability of hot section components
 - 40% cooling flow reduction
 - Reduced combustion temperatures (average and hot streak)

Mid-Term: Extend Technology to Other Turbine Components

• Enables turbine rotor inlet temperature to be increased for increased power and efficiency

Future Plan: Enabler for Advanced GT's

• Enables use of high temperature materials in the shell to address increasing firing temperatures

Development Funding Opportunities

SBIR programs*: Government-funded avenue to accomplish specific objectives within small business

- Phase I Development of a concept, fundamental research
 - Development of innovative cooling approaches for robust design (DE-SC0002713)
- Phase II Detailed design/development, manufacture of prototypes
- Phase III Commercialization
 - Demonstration of enabling spar-shell cooling technology in gas turbines (DE-FE0006696)

* Small Business Innovative Research (Program/Grant)

Program goals and objectives

- Develop and test commercial prototype:
 - First-stage turbine airfoils requiring significantly less cooling flow than the current state-of-the-art
- Proposed cooling approach:
 - Addresses durability concerns associated with turbine inlet pressure and temperature increases desired for future gas turbines
- Open door to commercialization:
 - Both F-frame and other highly cooled turbine airfoil applications
- → Enabling technology for future gas turbine-based power systems
 - DOE Office of Fossil Energy-sponsored hydrogen and oxy-fueled turbomachinery programs

Low-risk approach to commercialization

- 1st stage turbine vane is a stationary component no rotating mass concerns
- Use existing (proven) vane casting as the shell
- Sequential-impingement cooling provided by FTT spar insert
 - Low risk due to cold environment
- Basic cooling flow and heat transfer performance can be evaluated via experimental test prior to engine installation
- Health can be monitored during engine test to assure product integrity
 - Demonstration will install 6-8 parts in a rainbow arrangement with bill-ofmaterial parts
 - Frequent borescope (visual) inspection
 - On-line health monitoring instrumentation (IR & thermocouples)

Enabling Spar-Shell Cooling Technology Application of specific cooling methods depends on local environment

- Material limits routinely approached Natural consequence of need to minimize cooling flows to optimize the power and performance of the machine
- Cooled turbine components placed in position of inherent risk
 - Coolant system breakdown may cause material limits to be exceeded, resulting in premature distress, or failure of the component

10/27/2011

Approach to reduce cooling flow requirement

Conventional cooling design

Philosophy/practice limits cooling potential

10/27/2011

Sequential impingement cooling: Makes use of available pressure to increase heat transfer

Enabling Spar-Shell Cooling Technology

- Re-use of coolant through multiple, sequential impingement
- Post-impingement pressure set high enough for coolant outflow to all regions of airfoil

Advanced cooling technology design

Advanced cooling technology geometry

Layered spar satisfies sequential impingement system needs for routing of coolant flows
Layer A2

Rapid prototype of spar-shell vane

- FTT is executing a program to accelerate demonstration and validation of Spar-Shell turbine components in a commercial prototype scale
- The program includes design, procurement and instrumentation of hardware, test planning and support during engine assembly and test, and post-test data reduction
- Target test vehicle and windows of opportunity have been identified – design of hardware is in progress

Acknowledgements

Department of Energy National Energy Technology Laboratory

SIEMENS Siemens Energy

Thank You

&

Questions?

10/27/2011