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Motivation: Hierarchical manufacturing of zeolite films

For a Review:
4. Crystal Structure Mark A. Snyder, Michael Tsapatsis,
RS, (nm) Angew. Chem. Int. Ed. 2007, 46, 7560-7573
- \ Shaped Crystal
Oriented

Monolayer of
Crystals
(meso-macro)

AIChE Journal, 42(11), 3020-3029 (1996)
Chemistry of Materials 10, 2497-2504 (1998)
Science 300:(5618), 456-460 (2003)

Angew. Chem. Int. Ed. 45, 1154-1158 (2006)

Nature Materials, 7(12), 984-991(2008)
Science 325 (5940), 590-594 (2009)
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Seeded Growth Approach
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Chemistry of Materials 10, Angew. Chem. Int. Ed. 45,
2497-2504 (1998) 456-460 (2003) 1154-1158 (2006)
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Example: Nanoparticle films as seeds for zeolite membranes

10 um
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Angew. Chem. Int. Ed. In Press (2010) High Performance Randomly
Oriented Zeolite Membranes Using Brittle Seeds and Rapid Thermal Processing
Problems: High Cost, Scale up not demonstrated, grain boundary defects
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Summary

Prlvmer membranes conlwining soloclively permeaabls flakes will show selective fuxes, I the
fhakes arc highly seleclive, the relative axes will be proportional 1o the sguare rul ol 1he mherent
seleviivity. 14 the Hakes , vhe rolative Muxes imas appreach thie more modest
valna. Achieving this seleslivity reguires corelully adinsting the ditfusion coetlicient in the poly
mer conlinuurm o the genmetric average of the diffusion ccelficients m Qakes thno: the aspece
rutinof ke Mlakes. Thesa results are compared with oiher thoories ol comansite mem branes.

ILantroduction

Membranes containing impermeable [lakes show much lower permeabilities
1than membranes without such flakes. Wor example, a polyearhonate film con-
laining tweniy percent mica flakes shows a steady slale carbon dioxide flux
vne hundred times less than that across a pure polycarbonate film of equal
thickness [1]. The lag time to reach this steady state 1s eighly limes longer
than that for the {ilm without flakes [2]. As a result, flake-filled membranes
are candidates for a variety of packaging materials.

In studies of such materials, [ have wondered about a membrane with selec-
tively permeable flakes. Such & membrane conld be used to separate chemical
mixtures cven when the flake maierials were difficult to fabricate as mem-
hranes. For example, zeolite 5A adsorbs linear alkanes but largely rejects
branched alkanes |3]. A membrane containing flakes of zeolite 5A might be
substantially more permeable to inear alkanes than to hranched alkanes. The
reaulting flake-filled composite might be more elfective than a flawed mera-
hrane of zeolite alone [2].

In this paper, T estimate the properties expected for such flake-filled merm-
branes, In so doing, T build on earlier studies of membranes with impermeahle
Makes [1,2]. These earlier studics made substantial approximaticns which were

wper presented at the Third Ravells Svmposiorm on Advanced Membrane Scicoue and Toch

Aoy RavesTlo Tl Octuber 207, 1038,

= EE T AN 1500

Membranes with flakes for Separation Processes

ZTE

justified by later experiments, T will use these approximalions again in the
analysis presented here. The results show what successes and what limitations
we can expect from membranes with selective flakes.

Theory

Past models of flake-tfilled membranes have idealized the flakes as regularly
spaced bricks, like those shown in Fig. 1 {1,5-7]. Such an idealization involves
three implicit assumptions, The first, that the flakes exist within regular la-
meliae, has not heen complelely investigated and 18 probably the most severe
[%,9]. The second, that the [lakes are regularly spaced, is probahly not serious,
for analyses based on random (Takea give equivaleni results [1]. The third,
that ihe flakes are very long, is not that serious either, because diffusion will
always select. the shortest route around the flakes, and henee be less influenced
by the flakes’ longer dimensions.

We hegin our analysis by approximating the membrane filled with semi-
permeable flakes in a similay way. We idealize the membrane as lamellae, Each
lamella contains two layers: ope of polymer and one containing polymer and
flakes. ThiTusion first oceurs through the layer of only polymer. Tt then oceurs

e
’ 5 WL o] fiake
AN ——

st $ |

e

Fig. 1, Tdealization of the membrane. T hese approximations eche those for wmerobranes with im-
permieable feakea
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Films of Anisotropic Porous Particles (Selective Flakes)

"~230 microns

MATRIX

processability NANOPOROUS LAYERS
molecular sieving
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Layered Precursors to Zeolites as Selective Flakes

AIPO: Gao et al., J. Solid State Chem 129, 37 (1997)

MCM-22: Corma et al., Nature 396, 353-356 (1998)
Leonowicz et al.Science 264, 1910-1913 (1994)

AMH-3: Jeong et al., Nature Materials 2:(1), 53-58 (2003)
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Early results using layered AIPOS (chem. mater., vol. 16, No. 20, 2004)
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Layered structure not preserved,; Exfoliation not achieved,;
However, Selectivity enhancement demonstrated for the first time
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Swelling of AMH-3 results in altered layer structure

Projection along b-axis Projection along a-axis

Original AMH-3
= 03:Q%=3:1

Swollen structure A
= 5i1-5i1 condensation
=Q¥Q*=1:1

Swollen structure B
= Si1-Si3(Si4)

=Q*Q*=1:3
Lo T =L Bwollen AMH-3 T PEI
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Angew. Chem. Int. Ed. 47(3), 552-555 (2008)
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Example of Application: Hydrogen Selective Membranes

Fuel gas,
Main components : Steam
Coal H2, CO, CO, —
- . . \ Water hift talyti
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Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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IGCC w/ WGSMR

..................................................................................

Permeate

IGCC efficiency
Without CO,, capture: 46.7%
With conventional CO, removal: 40.5%

With WGSMR and CO, recovery: 42.8% based on
35atm feed, 20atm permeate (15atm pressure drop)

330°C in the feed
hydrogen/carbon dioxide selectivity = 15
hydrogen permeability = 0.2 mol/m?-s-bar

Membrane Area Needed: 2,200 m? (400MW)

Bracht et al., Energy Convers.Mgmt 38, S159-164 (1997)
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MWW Layers as hydrogen selective flakes

> Invented at Mobilt

» Crystallizes as a lamellar
structure

MCM-22(P)

1Rubin and Chu, US Patent 4954325, 1990
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MWW Layers as hydrogen selective flakes

LA
MCM-22(P) MCM-22

1Rubin and Chu, US Patent 4954325, 1990
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MWW Layers as hydrogen selective flakes

> High thermal stability RN Y

» Large sorption capacity ! | |

» Important for catalysis P~ P
MCM-22

1Rubin and Chu, US Patent 4954325, 1990
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MWW Layers as hydrogen selective flakes

Unigue and unusual pore structure

¢ 12-ring 6-ring cups

1Rubin and Chu, US Patent 4954325, 1990
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MWW Crystals
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Layer by layer deposition @acs 132(2), 448-449 (2010))

5 layers of MCM-22/surfactant-templated-mesoporous-silica
on porous alumina
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Comparison of Ideal Selectivity

10 H,/CO, 30
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The ideal selectivity (H,/CO, and H,/N,) increased monotonically with
temperature and improved with the number of deposition cycles.
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MCM-22/Silica Membranes for Hydrogen Separations

*Open symbols : selectivity through a-Al,O,discs
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Choi J. and Tsapatsis M. Journal of the American Chemical Society

132(2), 448-449 (2010)

Experimental Demonstration of Selective Flake Composite Concept
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Advantages by reduction in flake thickness

1000 nm

1000 nm

Increase selectivity without Increase throughput without
decreasing throughput decreasing selectivity
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Challenge: Methods to exfoliate the zeolitic layers while

preserving framework connectivity (pore structure)

XRD, TEM and TGA results are consistent with the following
picture:

Acidification

MCM-22(P)

Swollen Structure
Maheshwari et. al., JACS, 2008, 230, p1507
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Polystyrene nanocomposite by melt compounding

»Mixing of molten polymer and
swollen zeolite layers

» Separation of layers by
combined effect of shear forces
and polymer diffusion between
the layers B
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Polymer nanocomposite by melt compounding

Preservation of pore
structure of layers after
exfoliation

NIVERSITY OF MINNESO hemical Engineering & Materials Sci



Recovery of zeolite layers by depolymerization

“Layered Zeolite materials and Methods
Related Thereto” Tsapatsis, M., Maheshwari
S., Koros W. and Bates F.S.

PCT/US2008/012455; WO2009108166

o Wy

Polymer Nanocomposite

depolymerization
o

™
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Exfoliation of siliceous MCM-22(P) in gram quantity

Siliceous ITQ-2

Intensity

0 5 10 15 20 25
20/ °(Cu Kay)
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Evaporation Induced Convective Assembly of MWW layers on Si wafer

5 .0kVY >9,000 1um W 13.0mm



— ' n . . .
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Hydrothermal treatment of MWW (~90% steam in nitrogen) at 500°C, 10 bar

MCM-22 after 21 days

Intensity

MCM-22

o 5 10 15 20 25 30 35
26/ °(Co Ka)
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Summary and Future Work

Exfoliated Layers

and

Films

Membrane Performance and Stability Testing continues as planned
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Other Materials: Synthesis and swelling of RUB-18

- - - —

stvelled/RUB-18
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Membrane Reactor Modeling: Objectives and Approach

® Develop a membrane reactor (MR) model
® integrate model in IGCC
® Study the effect of reactor design on performance

® Determine the membrane characteristics necessary to
® achieve DOE target goal of 90 % of CO, capture M-
® obtain desired H, recovery value of 95 % @

® Satisfy transportation safety constraints of CO, capture stream ()
® Jow CO concentration obtained by reaching desired CO conversion value of 98 %
® H, molar fraction below flammability limit of 2 %

® Minimize membrane cost as a function of surface area

® Advised by Dr. John Marano (NETL consultant)

(1) Marano, Report to DOE/NETL (2010)
(2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)
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MR Modeling Assumptions and Simulation Set Up

Composition @;
CO = 24.43 % tHe A
H,0O =48.86 %

— feed
CO,=5.68% — == 5 CO+H20 == COx+Ho retentate
H,=19.33%
sweep in in permeate

® Assumptions

. . Flow configurations
® 1J1-dimensional shell and tube reactor g

. . 4 co-current
® catalyst packed in the tube side

: . _ * _
® thin membrane layer placed in inner side of tube counter-current

® sweep gas flows in the shell side Simulation conditions from literature

. i (2)
® plug-flow operation for both shell and tube ¢ catalysttype and reaction rate

i i 3
® constant temperature and pressure reactor dimensions

*
® steady-state operation ¢ membrane characteristics ¢
L 4

conditions consistent with IGCC

® ideal gas law 1LIONS
specifications

(1) Marano, Report to DOE/NETL (2010)

(2) Boutikos and Nikolakis, J. Membr. Sci. 350, 378-386 (2010) Developed model validated using
(3) Amelio et al., Energy Convers. Mgmt 48, 2680-2693 (2007) published simulation data @

(4) Bracht et al, Fnergy Convers. Mgmt 38 S159-164 (1997)
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Counter-current Simulation Results: Concentration Profiles

sz

feed
— = CO+H>0 == COs+H>
permeate in

Counter-current Case: Species Concentration in Tube and Shell [mol/cc] vs. Reactor Length

co
o r N
{

retentate 3

sweep

15
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0 5 10
x 10
T T T T T
o, °K ]
T 4r =
3 1 1 1 1 7
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x 10"
T T T T L
~ 4 b
o
O 2 —/-/ i
O 1 1 1 1 1
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x 10
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o 2 i
1 -
o I I 1 T e
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3F T T T T I
8 2F i
8 1r 7
o . . . , ,
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(*) others: N, + Ar, H,S + COS, CH, + C,Hg, NH;4
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Counter-current Simulation Results: Changing Membrane Selectivity

THE THE
feed CO+H20 == COz+H> retentate )
permeate in in sweep *) (% CO, + % H,0)z 295 %
Membrane Reactor Value [%] Value [%] Value [%] Target
Parameter (Shzsan = 1000) | (Spgjan = 100) | (Spypjan = 10) [%0]
CO converted
Xeo=~ gair® 99.92 | 99.95 |100.00| 98
_H, in permeate
"= H4CO In foed 99.16 | 99.14 | 97.71 | 95
_CO+CO, inretentate
Ceor™Goreo, nfeed 98.96 | 90.07 | 28.76 | 90
_CQO, inretentate * * *
ors = e LA 52.87° | 50.37* | 29.68* | 95
_ H, in permeate
H2P ™ 2 4429 4318 3417 44

total in permeate
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Modeling Future Work

® continue MR model validation using experimental data @
® analyze different modeling scenarios: 2-dimensional, non-isothermal
® perform cost analysis using selected reactor design

® integrate MR model in IGCC unit (Matlab and Aspen simulations)

(1) Tang et al., J. Membr. Sci. 354, 114-122 (2010)
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