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The Project & The Technology RoadmapThe Project & The Technology Roadmap

•• Project Title: Dense Multiphase Flow Simulation: Continuum Project Title: Dense Multiphase Flow Simulation: Continuum 
Model for PolyModel for Poly--dispersed Systems Using the Kinetic Theory dispersed Systems Using the Kinetic Theory 
ApproachApproach

•• Participants: University of Puerto Rico Participants: University of Puerto Rico –– Mayaguez (Mayaguez (BogereBogere); ); 
Illinois Institute of Technology (Arastoopour, Strumendo, Illinois Institute of Technology (Arastoopour, Strumendo, 
Gidaspow)Gidaspow)

•• PolyPoly--dispersity (size, density) &  Kinetic theorydispersity (size, density) &  Kinetic theory



The Role of the Illinois Institute of The Role of the Illinois Institute of 
Technology UnitTechnology Unit

•• Can the FCMOM be used in a kinetic theory approach? Can the Can the FCMOM be used in a kinetic theory approach? Can the 
FCMOM be used to solve the FCMOM be used to solve the EnskogEnskog--Boltzmann equation for Boltzmann equation for 
inelastic particles?inelastic particles?

•• Overall strategy: first 2Overall strategy: first 2--D systems (disks), afterwards 3D systems (disks), afterwards 3--D systems D systems 
(spheres).(spheres).

•• Derivation of governing equations.Derivation of governing equations.

•• Validation through test cases (relaxation to the homogeneous Validation through test cases (relaxation to the homogeneous 
equilibrium state, homogeneous cooling, impulsive startequilibrium state, homogeneous cooling, impulsive start--up up 
problem).problem).



A Parallel between PBE and Kinetic A Parallel between PBE and Kinetic 
TheoryTheory

How to predict the 
change of particle 
size, density, shape, 
composition?

How to describe the fluid 
dynamics of inelastic 
particles (in not too dense 
flows)?

( , , )f tξ x

Internal Variables

(Size, Density, Shape, etc.)

particle velocity 
distribution function

Components of Particle 
Velocities

particle size 
distribution function



Two Fundamental EquationsTwo Fundamental Equations
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Methods of SolutionMethods of Solution

Method of Classes, Methods of 
Moments (and MWR), Successive 
Approximations, Monte Carlo, 
Similarity Solutions

For Low Computational Effort (CFD applications):

Population Balance 
Equation:

Enskog-Boltzmann 
Equation:

Discrete Ordinates, Methods of 
Moments (and MWR), 
Monte Carlo, Normal 
Solution methods

Normal Solution Methods, 
Methods of Moments

Self-preserving Solutions, 
Methods of Moments

Quadrature Methods 
(QMOM, DQMOM)

FCMOM

New Methods of Moments 
for Enskog-Boltzmann eq.



Finite size domain Complete set of trial Finite size domain Complete set of trial 
functions MOM (FCMOM)functions MOM (FCMOM)

1.1. FCMOM for PBE: monoFCMOM for PBE: mono--variate PBE (Chemical Engineering variate PBE (Chemical Engineering 
Science, Science, SolutionSolution of PBE of PBE byby MOM in finite MOM in finite sizesize domainsdomains, , 63, 262463, 2624--
2640, 2008)2640, 2008) and biand bi--variate PBE (Industrial and Engineering variate PBE (Industrial and Engineering 
Chemistry Research, Solution of bivariate PBE using the FCMOM, Chemistry Research, Solution of bivariate PBE using the FCMOM, 
48(1), 26248(1), 262--273,2009)273,2009)

2.2. Work in progress on the application of FCMOM to the Work in progress on the application of FCMOM to the EnskogEnskog--
Boltzmann eq.Boltzmann eq.

1.1. PBE or PBE or EnskogEnskog--Boltzmann equation in a finite domain (moving Boltzmann equation in a finite domain (moving 
boundary problem)boundary problem)

2.2. Efficient PSD reconstruction through orthogonal polynomialsEfficient PSD reconstruction through orthogonal polynomials

3.3. Multivariate applications: domains always well definedMultivariate applications: domains always well defined



FCMOM for monoFCMOM for mono--variate homogeneous variate homogeneous 
processesprocesses
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( , ) is the particle size distribution (PSD)rf r t

Nucleation, breakage, 
aggregationG = growth rate



Dimensionless Moments EquationsDimensionless Moments Equations

( ) ( ) ( )

( ) ( ) ( ) ( )

max maxmin m

1max maxmin min
1 1 1 1

max min max min

ma

in
1

max min max mi

m

n

x

1 1

2

1

1

1 1

1

i i

i i

sc

i

dr drdr drf f f f
r r r rdt dt dt dt

dr drdr dri i
r r r rdt dt dt dt

t
r r

t
μ μ μ

+
− −

−

⎛ ⎞ ⎛ ⎞⎡ ⎤

⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝

⎡ ⎤− − − ⋅ ⋅ ⋅ + − − − ⋅ ⋅ ⋅ − + +⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦− −⎝ ⎠

⎠

⎝

∂

⎠
⋅

+

−

−

+
∂

( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
i

11 1

1 1
max min

n

2

1 i

i i
sc sc

r
sc

t ti G f

G f G

r dr B D r dr
r r f

f

−

− −

− − −

⋅
− ⋅

⎡ ⎤⋅ ⋅ − − ⋅ ⋅⎣

⋅ ⋅ ⋅ ⋅ = ⋅ − ⋅ ⋅
−

⎦

∫ ∫

( )1

1
Dimensionless moments 

i

i rf r drμ
−

= ⋅ ⋅∫

Term due to the change of 
reference frame

Boundary 
Conditions

1 1 1 1

, dimensionless values   , scale factors

, , , boundary values
sc sct f t f

G f G f− −

= =

=

Integrals of growth, nucleation, aggregation, breakage



FCMOM: PSD vs. MomentsFCMOM: PSD vs. Moments
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PSD as a series of Legendre polynomials:

1) Good properties of convergence of Legendre series: PSD 
is well represented with few moments

2) PSD explicit: quadratures for growth/aggregation 
/breakage integrals can be optimized

3) Moments equations always closed

number
of moments
M =



Validation Cases (Monovariate Distributions)Validation Cases (Monovariate Distributions)
• Growth (linear, constant, diffusion-controlled): analytical solutions

• Growth (constant, diffusion-controlled) +Primary Nucleation: analytical 
solutions

• Growth (diffusion-controlled) +Nucleation (primary and secondary) +Solute 
mass balance: experimental data

• Dissolution: analytical solution

• Aggregation (constant, linear, product, Smoluchowski continuum kernels): 
analytical solutions and self-preserving solution for the Smoluchowski
continuum kernel

• Aggregation and Growth (constant, linear kernels and constant and linear 
growth): analytical solutions

• Breakage (symmetric breakage, power-law breakage function, homogeneous 
type breakage kernels): analytical solutions

Chemical Engineering Science, Chemical Engineering Science, SolutionSolution of PBE of PBE byby MOM in finite MOM in finite sizesize
domainsdomains, , 63, 262463, 2624--2640, 20082640, 2008



Diffusion Controlled GrowthDiffusion Controlled Growth

6 moments

20.78 micron /sec
20 secfin

K
t
=
=

dr KG
dt r

= = Clouds: particle 
radius > 1 micron 
(McGraw)

8 moments 10 moments



Aggregation modelsAggregation models
1.1. SmoluchowskiSmoluchowski equation: equation: particles of any size are produced and aggregate.particles of any size are produced and aggregate.

2.2. Finite Finite SmoluchowskiSmoluchowski equation: equation: a finite domain is defined. Particles of any a finite domain is defined. Particles of any 
size can be produced but not all the aggregations are possible: size can be produced but not all the aggregations are possible: aggregations aggregations 
creating particles larger than the maximum size are neglected (screating particles larger than the maximum size are neglected (similar to method of imilar to method of 
classes).classes).

3.3. OortOort--HulstHulst equation: equation: vv’’ particles and v particles aggregate (vparticles and v particles aggregate (v’’< v< v); v); v’’ particles particles 
break in monomers and aggregate to v particlesbreak in monomers and aggregate to v particles

DubovskiDubovski (J. Phys. A, 32, 781(J. Phys. A, 32, 781--793, 1999) compared 1) vs. 3):793, 1999) compared 1) vs. 3):

in 1), aggregation front propagates at infinite rate;in 1), aggregation front propagates at infinite rate;

in 3), aggregation front moves at finite rate, unless mass consein 3), aggregation front moves at finite rate, unless mass conservation law breaks down rvation law breaks down 
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Aggregation: constant kernel K=KAggregation: constant kernel K=K00
Initial condition for PSD: Gaussian-like distribution
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For finite Smoluchowski
equation:

• Number of moments = 8
• Increasing the ratio         it 

converges to the solution of 
the Smoluchowski equation

For Oort-Hulst equation:
• Number of moments = 10
• Aggregation front can be 

tracked
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Aggregation: sum kernel K=KAggregation: sum kernel K=K00*(*(v+vv+v’’))
Initial condition for PSD: Gaussian-like distribution
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For finite Smoluchowski
equation:

• Number of moments = 12
• Increasing the ratio         it 

converges to the solution of 
the Smoluchowski equation
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Aggregation: Aggregation: SmoluchowskiSmoluchowski Kernel Kernel --
Continuum RegimeContinuum Regime

Initial condition for PSD: Exponential distribution
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Particle DissolutionParticle Dissolution

1) Solution with other MOM is problematic for particle dissolution 
2) Even in this case, results are excellent with FCMOM

Constant dissolution rate, 10 moments



Validation Cases (Bivariate Distributions)Validation Cases (Bivariate Distributions)

• Growth (linear, constant, diffusion-controlled): analytical 
solutions

• Dissolution: analytical solution

• Aggregation (constant kernel): analytical solution

• Aggregation + Growth (constant kernel and linear growth 
rate): analytical solution

Industrial and Engineering Chemistry Research, Solution of bivarIndustrial and Engineering Chemistry Research, Solution of bivariate iate 
PBE using the FCMOM, 48(1), 262PBE using the FCMOM, 48(1), 262--273, 2009273, 2009



Bivariate PBE: Diffusion Controlled GrowthBivariate PBE: Diffusion Controlled Growth

Algorithm is still efficient as in monovariate case
(Computational time about 2-3 bigger than monovariate 

case)

Different crystal growth on two different axes: 
2 2

1 21 micron /sec 0.5 micron /secK K= =



Anisotropic DissolutionAnisotropic Dissolution
Different crystal dissolution rates on different axes 

1
1 2, 10  micron/secK K −≅



Initial condition: gamma distribution

Bivariate aggregation (constant kernel)Bivariate aggregation (constant kernel)
Nano-aggregates production: particle volume and surface area

Again, comparison is excellent and the domains are well defined



Initial condition: mixed gamma and exponential distribution

Bivariate aggregation (constant kernel)Bivariate aggregation (constant kernel)



Aggregation and GrowthAggregation and Growth
Constant kernel, linear growth rate (chemical reaction on the 

particle is controlling)

Internal variables: particle volumes of each of 2 components

Initial condition: gamma distribution

Analytical solutions by Gelbard & Seinfeld



22--D Boltzmann EquationD Boltzmann Equation
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A Finite Boltzmann Equation ModelA Finite Boltzmann Equation Model

1.1. Classical Boltzmann Equation (CBE): Classical Boltzmann Equation (CBE): particles of any velocity range can particles of any velocity range can 
collide and are obtained by collisions.collide and are obtained by collisions.

2.2. Finite Boltzmann Equation (FBE): Finite Boltzmann Equation (FBE): a finite domain is defined. Particles of a finite domain is defined. Particles of 
any velocity range can be produced but not all the collisions arany velocity range can be produced but not all the collisions are possible: collisions e possible: collisions 
creating particle velocities larger than the maximum velocity arcreating particle velocities larger than the maximum velocity are neglected.e neglected.

Increasing the finite domain, the solution of the FBE converges Increasing the finite domain, the solution of the FBE converges to the to the 
solution of the CBEsolution of the CBE
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Computation of Collision IntegralsComputation of Collision Integrals
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Integration in finite domain is more difficult than in infinite 
domains; classical manipulations cannot be used

Procedure to pre-compute automatically collision integral 
coefficients



Solutions in Homogeneous ConditionsSolutions in Homogeneous Conditions

1.1. Elastic ParticlesElastic Particles: the system relaxes to the : the system relaxes to the MaxwellianMaxwellian state state 
(from an initial condition which can be not(from an initial condition which can be not--MaxwellianMaxwellian).).

2.2. Inelastic ParticlesInelastic Particles: after sufficiently long times, the system : after sufficiently long times, the system 
approaches the Homogeneous Cooling State solution (for 2approaches the Homogeneous Cooling State solution (for 2--D D 
systems: systems: BreyBrey, , CuberoCubero, Ruiz, Ruiz--Montero, Physical Review E, 59 (1), Montero, Physical Review E, 59 (1), 
12561256--1258, 1999).1258, 1999).



Elastic ParticlesElastic Particles
2

2100 ,  Granular Temperature 0.2 ,  Solid fraction (Area) 0.01P
mD
s

μ=

With 7-8 moments, there are still some oscillations but 
there is a good agreement.

Simple application, but not trivial: no assumption of 
Maxwellian distribution in the FCMOM



ConclusionsConclusions
1. The FCMOM is an efficient (low computational effort) 

MOM to solve PBE and provides accurate PSD 
reconstruction.

2. The FCMOM is efficient and accurate also for bivariate 
distributions; besides in bivariate applications the 
domains of the internal variables are always well 
defined.

3. The FCMOM was applied to the 2-D Boltzmann equation. 
Application to the relaxation to equilibrium of elastic 
particles showed good agreement.

4. Future plan: validation of the FCMOM for the 2-D 
Boltzmann equation will be extended (homogeneous 
cooling of inelastic particles, impulsive start up 
problem). 


