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The Project & The Technology Roadmap

e Project Title: Dense Multiphase Flow Simulation: Continuum
Model for Poly-dispersed Systems Using the Kinetic Theory
Approach

 Participants: University of Puerto Rico — Mayaguez (Bogere);
Illinois Institute of Technology (Arastoopour, Strumendo,
Gidaspow)

» Poly-dispersity (size, density) & Kinetic theory



The Role of the lllinois Institute of
Technology Unit

Can the FCMOM be used in a kinetic theory approach? Can the
FCMOM be used to solve the Enskog-Boltzmann equation for
Inelastic particles?

Overall strategy: first 2-D systems (disks), afterwards 3-D systems
(spheres).

Derivation of governing equations.

Validation through test cases (relaxation to the homogeneous
equilibrium state, homogeneous cooling, impulsive start-up
problem).




Theory
How to predict the How to describe the fluid
change of particle dynamics of inelastic
size, density, shape, particles (in not too dense
composition? flows)?
particle size f (E ; t) particle velocity
' P distribution function

distribution function
Internal Variables / \

(Size, Density, Shape, etc.)

Components of Particle
Velocities



Two Fundamental Equations
Population of ov-f 0G-f

Balance r | = ( B — D)
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Methods of Solution

Population Balance Enskog-Boltzmann
Equation: Equation:

Method of Classes, Methods of Discrete Ordinates, Methods of
Moments (and MWR), Successive Moments (and MWR),
Approximations, Monte Carlo, Mont_e Carlo, Normal
Similarity Solutions Solution methods

For Low Computational Effort (CFD applications):

: 1

:

Self-preserving Solutions, Normal Solution Methods,
Methods of Moments Methods of Moments

Quadrature Methods

(QMOM, DQMOM) :> New Methods of Moments
FCMOM for Enskog-Boltzmann eq.
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functions MOM (FCMOM)

1. PBE or Enskog-Boltzmann equation in a finite domain (moving
boundary problem)

2. Efficient PSD reconstruction through orthogonal polynomials

3. Multivariate applications: domains always well defined

1. FCMOM for PBE: mono-variate PBE (Chemical Engineering
Science, Solution of PBE by MOM in finite size domains, 63, 2624-

2640, 2008) and bi-variate PBE (Industrial and Engineering
Chemistry Research, Solution of bivariate PBE using the FCMOM,

48(1), 262-273,2009)

2. Work in progress on the application of FCMOM to the Enskog-
Boltzmann eq.



FEMUM |OI’ mono-varlafe Homogeneous

Processes
f_(r,t) is the particle size distribution (PSD)

of, G-t o o

r=[0, 0]
ot / or \ l

Nucleation, breakage, r=[r (), ()]
aggregation

G = growth rate
Moving boundaries

. (drmin +drmaxj_|_?.(_ drmin _|_drmaxj + F_ 11
| dt  dt dt  dt =1
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( w) Lo Correction term for change
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Dimensionless Moments Equations

Dimensionless moments s :j N ~(F)i dr

Term due to the change of
reference frame
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— i — 1 dr_. dr — i1 —] 1 dr_.dr
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[1 (=) ‘1} (T = T ) ( dt dtj [1 SN (r —r.)( dt ' dt j+

2'tsc r3 | r
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2.1 1 — i1 — t 1 i = oy
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t, f =dimensionless values t_, f. =scale factors

G,, f,,G_,, f, =boundary values



FCMOM: PSD vs. Moments
PSD as a series of Legendre polynomials:
T, (ri)~ X, (1)-4,(7) p

AN

Dependency on external Dependency on
variables Internal
variables (size)

. |

1) Good properties of convergence of Legendre series: PSD
/s well represented with few moments

2)PSD explicit: guadratures for growth/aggregation
/breakage integrals can be optimized

3) Moments equations always closed




Validation Cases (Monovariate Distributions)

e Growth (linear, constant, diffusion-controlled): analytical solutions

e Growth (constant, diffusion-controlled) +Primary Nucleation: analytical
solutions

e Growth (diffusion-controlled) +Nucleation (primary and secondary) +Solute
mass balance: experimental data

e Dissolution: analytical solution

e Aggregation (constant, linear, product, Smoluchowski continuum kernels):
analytical solutions and self-preserving solution for the Smoluchowski
continuum kernel

e Aggregation and Growth (constant, linear kernels and constant and linear
growth): analytical solutions

e Breakage (symmetric breakage, power-law breakage function, homogeneous
type breakage kernels): analytical solutions

Chemical Engineering Science, Solution of PBE by MOM in finite size
domains, 63, 2624-2640, 2008



PSD (dimensionless)

Diffusion Controlled Growth

K'=0.78 micron®/sec  clouds: particle
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Adggregation models

1. Smoluchowski equation: particles of any size are produced and aggregate.

2. Finite Smoluchowski equation: a finite domain is defined. Particles of any
size can be produced but not all the aggregations are possible: aggregations
creating particles larger than the maximum size are neglected (similar to method of
classes).

3. Oort-Hulst equation: v’ particles and v particles aggregate (v’< v); v’ particles
break in monomers and aggregate to v particles

of (v,t)-lv' : K(v,v')-f (v',t)-dv'

of (v,t) . . .
Franbt ~ —{K(v,v)-f(v,t)f(v,t)~dv
Net gain of particles Loss of particles breaking
aggregating /n monomers

Dubovski (J. Phys. A, 32, 781-793, 1999) compared 1) vs. 3):
in 1), aggregation front propagates at infinite rate;

in 3), aggregation front moves at finite rate, unless mass conservation law breaks down



PSD (dimensionless)

Aggregation: constant kernel K=K,

Initial condition for PSD: Gaussian-like distribution
s Vmax (U+l)(u+1) Vv ’ v
f[ j Fo+) U p{_(”}
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Aggregation: sum kernel K=K, *(v+V)

Initial condition for PSD: Gaussian-like distribution
s Vmax (U+1)(U+l) v ’ Vv
f( j Fo+) U p[_(”}
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Aggregation: Smoluchowski Kernel -

Continuum Regime

1 1
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Initial condition for PSD: Exponential distribution
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Particle Dissolution

Constant dissolution rate, 10 moments

initial condition
2 numerical at t=t1 | |

------- analytical at t=t1
& numerical at t=t2
— — analytical at t=t2 |7
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1) Solution with other MOM is problematic for particle dissolution
2) Even in this case, results are excellent with FEMOM



Validation Cases (Bivariate Distributions)

e Growth (linear, constant, diffusion-controlled): analytical
solutions

e Dissolution: analytical solution
e Aggregation (constant kernel): analytical solution

e Aggregation + Growth (constant kernel and linear growth
rate): analytical solution

Industrial and Engineering Chemistry Research, Solution of bivariate
PBE using the FCMOM, 48(1), 262-273, 2009



Bivariate PBE: Diffusion Controlled Growth

Different crystal growth on two different axes:
K, =1 micron®/sec K, = 0.5 micron®/sec
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Algorithm is still efficient as in monovariate case

(Computational time about 2-3 bigger than monovariate
case)



bivariate P5D

Anisotropic Dissolution

Different crystal dissolution rates on different axes
K,,K, =107 micron/sec
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Bivariate aggregation (constant kernel)

Nano-aggregates production: particle volume and surface area

Initial condition: gamma distribution
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Again, comparison is excellent and the domains are well definea



bivariate PSD
{dimensionless)

Bivariate aggregation (constant kernel)

Initial condition: mixed gamma and exponential distribution
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Aggregation and Growth

Constant kernel, linear growth rate (chemical reaction on the
particle is controlling)

Internal variables: particle volumes of each of 2 components
Initial condition: gamma distribution

Analytical solutions by Gelbard & Seinfeld
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2-D Boltzmann Equation
of, oc-f, 8F -t

C 4 tot 'c _ ( B— D)
ot OX oc col!
/oS \

Particle velocity F,,, external forces Collisions

B= | I[—f ¢\ xt): (c;,x,t)]DF,.(g[k).olk.clc1

gek >0

Terms of B-D D= [ [[f.(ext) f (e, x1)]-Dy-(gk) dk-de,

gek>0

(due to collisions) are: D, = particle diameter; g = relative velocity; k = unit vector
e = restitution coefficient; ¢, = second particle velocity;

¢ ,c, = pre collision velocities leading to ¢, ¢,

2-D Boltzmann equation is a bi-variate PBE, in which:

Internal variables are particle velocities and, therefore,
the "growth rates” are the external forces F,,,



A Finite Boltzmann Equation Model

Homogeneous conditions g | J-|:i.fc(c"X’t).fc(c'l’x,t)]Dp.(g[k).dk.dcl

2

gek>0 €

aa—ftC:(B_ D)Cou D= I H:fc (C,X,t)- f (cl’x’t):l. D, -(gEk)-dk-dcl

gek>0

1. Classical Boltzmann Equation (CBE): particles of any velocity range can
collide and are obtained by collisions.

2. Finite Boltzmann Equation (FBE): a finite domain is defined. Particles of
any velocity range can be produced but not all the collisions are possible: collisions
creating particle velocities larger than the maximum velocity are neglected.

Increasing the finite domain, the solution of the FBE converges to the
solution of the CBE



Computation of Collision Integrals

Homogeneous

all’li i iy iy
b _[((B_D) . . .d .

[P (&) g [ £ (8 )f (BY)(&) (&) (gk) dk g -de

g,&' = dimensionless velocities of the 2 colliding particles; k = unit vector

: !

Integration in finite domain is more difficult than in infinite
domains, classical manipulations cannot be used

:

Procedure to pre-compute automatically collision integral
coefficients



Solutions in Homogeneous Conditions

1. Elastic Particles: the system relaxes to the Maxwellian state
(from an initial condition which can be not-Maxwellian).

2. Inelastic Particles: after sufficiently long times, the system
approaches the Homogeneous Cooling State solution (for 2-D
systems: Brey, Cubero, Ruiz-Montero, Physical Review E, 59 (1),
1256-1258, 1999).
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With 7-8 moments, there are still some oscillations but
there is a good agreement.

Simple application, but not trivial: no assumption of
Maxwellian distribution in the FEMOM



Conclusions

1. The FEMOM is an efficient (low computational effort)
MOM to solve PBE and provides accurate PSD
reconstruction.

2. The FEMOM is efficient and accurate also for bivariate
distributions; besides in bivariate applications the

domains of the internal variables are always well
defined.

3. The FEMOM was applied to the 2-D Boltzmann equation.
Application to the relaxation to equilibrium of elastic
particles showed good agreement.

4. Future plan: validation of the FCMOM for the 2-D
Boltzmann equation will be extended (homogeneous
cooling of inelastic particles, impulsive start up
problem)



