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INTRODUCTION - ANTICIPATED MAIN RESULTS  
  
Goals: Identifying, understanding and modeling processes involved in methane production from 
hydrate-bearing sediments.  
  
Approach: observation and interpretation of phenomena at multiple scales, ranging from the pore-contact 
scale to the macro-reservoir scale, taking into consideration various possible driving forces (e.g., 
depressurization, thermal stimulation).  
  
Anticipated results and most significant contributions: In view of our experience accumulated since the 
beginning of the project, we anticipate that some of the main results from this study will address:  
  

 • Hydrate formation and growth. Different conditions (unsaturated from gas phase, from ice, from 
dissolved phase, in water-wet and oil-wet sediments, during gas exchange). Formation rates at 
gas-water interface. Transients. Spatial distribution. Relevance to marine and permafrost 
environments.  

• Hydrate-mineral bonding and tensile strength. Implications on the mechanical behavior of 
hydrate-bearing sediments in view of production strategies 

• Gas production by heating and depressurization. Study in 5-m long 1-D cell. Experimental 
study and modeling 

• Gas production by chemo-driven methods. Fundamental understanding of CO2-CH4 exchange 

• Gas production by transients 

• The role of effective stress in formation and production  

• Gas invasion versus gas production – Evolution of degree of saturation and fluid conduction. 
Fluid-driven fractures 

• Fluid conductivity in spatially varying sediments  

• Thermodynamic formulation  

• Coupled thermo-hydro-chemo-mechanical formulation 

• Production strategies in different formations  

• Relevance to real systems  

 Research Team: Shin graduated and moved to Korea (Assistant Professor). Espinoza is now fully 
dedicated  is completing the study on contact angle and surface tension. A visiting scholar L. Velasco  
(PhD at U. Andes) has joined the effort for this 2010 year. 
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SUMMARY OF RESEARCH DEVELOPMENTS DURING THIS QUARTER  
  
During this quarter, the research team has been dedicated to completing test sequences, advancing 
analyses, and preparing manuscripts for all tasks reported in previous quarterly reports. The most relevant 
themes have included:  
  

• Hydrate growth, induction time, supercooling, vibration effects  
• Spatial variability effects   
• CO2-CH4 replacement  
• Coupled thermo-hydro-chemo-mechanical modeling   
• Methane production studies using the ORNL Seafloor Process Simulator (SPS) 
• Field conditions  

 
This report documents the latest test conducted with the ORNL SPS device. The test 
configuration of the Georgia Tech chamber in the ORNL SPS is shown in the diagrams below. 
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Figure 1. Schematic diagram of the test chamber in the ORNL SPS. 
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The most recent test with the ORNL SPS vessel documented here is a continuation of the tests 
described in a previous report: “Quarterly, Fall 2009”. The experimental conditions of the most 
recent test are summarized in the following table, while the preparation steps for the test chamber 
are shown sequentially in the images of Figure 2 (see next page). 
 
 

  Measurements  Soil Type  Procedure  

Test 4  

Pressure (2) 
Temperature (6) 
S-wave (3 Pairs) 
Volume change 

F80 (sieved by #140) 
+ 

kaolinite (3% mass ratio) 

Setup the chamber  
Adjust soil saturation at 35% 
Pressurize and cool down the chamber  
First water injection and drainage 
Second salty water injection and drainage 
Depressurize  
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Specimen formation and instrumentation (Test #4)  

 
Figure 2. Preparation of the test chamber for the experiment. 
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Hydrate Formation  
  
Hydrate is formed using the unsaturated soil method. During formation, the gas pressure drops 
and heat is released. Figure 3 below shows the PT evolution for Test #4.  
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Figure 3. Pressure and temperature history during hydrate formation: 

the temperature decreases from 1 to 3. 
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Water injection/drainage cycle  
  
Additional hydrate forms during water injection and drainage. This phenomenon was also 
observed in previous tests, as well as the fact that some hydrate dissolution occurs during water 
injection due to the low concentration of CO2 in the injected water that was kept at room 
conditions.   
  

5

6

7

8

9

10

11

5 10 15 20 25 30 35 40

Time [hour]

Te
m

pe
ra

tu
re

 [°
C

]

1
2

3
4

5

6

Formation Injection

Pressurization

Drainage

5

6

7

8

9

10

11

5 10 15 20 25 30 35 40

Time [hour]

Te
m

pe
ra

tu
re

 [°
C

]

1
2

3
4

5

61
2

3
4

5

6

Formation Injection

Pressurization

Drainage

 
 
 

-2

0

2

4

6

8

10

12

14

16

18

35 40 45 50 55 60 65 70 75

Time [hour]

Te
m

pe
ra

tu
re

 [°
C

]

1
2

3
4

5

6

Salty water
injection

Depressurization

Trial of
drainage

Drainage

-2

0

2

4

6

8

10

12

14

16

18

35 40 45 50 55 60 65 70 75

Time [hour]

Te
m

pe
ra

tu
re

 [°
C

]

1
2

3
4

5

61
2

3
4

5

6

Salty water
injection

Depressurization

Trial of
drainage

Drainage

 
 

Figure 4. Temperature history during the test. 
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Amount of hydrate formation P-T Analysis 
The modified Peng-Robinson equation of state [Stryjek and Vera, 1986] has been used to 
calculate the gas pressure and volume dependency on temperature. 

 
( ) ( )bVbbVV
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−
−

=  modified Peng-Robinson (PRSV)  

The solubility of CO2 in the non-hydrate region is calculated by the equation of Duan and Sun 
(2003). 
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From the used gas amount (7.37mol), the amount of hydrate formed overnight can be estimated: 
7.37 mol of hydrate in the case of zero solubility in water and 7.09 mol of hydrate when finite 
solubility is assumed, i.e., 1.233mol/kg from Duan group’s calculator 
(http://www.geochem-model.org/models/h2o_co2/index.htm). Calculated hydrate saturation, i.e., 
Shyd=Vhyd/Vvoid, is 35%.  
 

SPS 

PRSV Phase boundary 
Dissolution

Figure 5. Calculation of the amount of gas converted to hydrate using the modified 
Peng-Robinson equation. 
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Geophysical monitoring - Vs evolution  
 
Shear wave measurements during hydrate formation/dissociation were also obtained as shown in 
the figures below:  
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Figure 6. Shear-wave measurements were employed to detect hydrate formation. 
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① Hydrate formation, ② Dissolution by water injection, ③ Hydrate formation by water 

drainage, and ④ Dissociation by depressurization 
 
Note that the shear wave velocity increases during hydrate formation and decreases during 
dissolution and dissociation.   
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Figure 7. Shear-wave velocity measurements correlated with the phase diagram: 
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Post production fabric – Fine migration (test #4)  
The sediment was split in six layers and sieved to identify trends in particle migration.  
More fines were found in the upper part than in the lower part of the specimen. Apparently, fines 
from the lower part of the specimen migrated during the drainage through the hole of the 
chamber bottom. Fines also migrated and were produced out of the bottom plate during final 
depressurization. This behavior suggests that fines near a gas production point in a gas hydrate 
field will migrate with the water flow. 
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Figure 8. Sediment sampled after the experiment to determine the concentration 
of fine kaolinite particles along the test chamber: 1: top, 6: bottom. 
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Fine particle migration (test #4)  
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A comparison of the results of Figure 9 with those reported earlier (Test 3 in Fall 2009 report) 
reveals some differences.  For convenience, the results of Test 3 are shown in Figure 10 below: 
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Figure 10. Distribution of kaolinite particles along the test chamber after Test 3. 

Figure 9. Distribution of kaolinite particles along the test chamber after the test. 
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The differences between Test 3 and Test 4 are the following: 
1. In Test 4, a lower flowrate was used for fluid drainage, and depressurization occurred 

through the bottom of the vessel (instead of the top) at the end of the experiment. 
2. Because of the low flowrate that was used for fluid drainage at the end of the test, no 

volume expansion, fluid-sediment instability, and fracture were observed in Test 4.  
These phenomena were observed in Test 3 where a higher flowrate was used for fluid 
drainage. 

3. Less fines were found in the lower part than in the upper part of the specimen indicating 
that fines migrated with the flow during fluid drainage. 

 
 
Conclusions  
  
Based on Tests 1-4, the following conclusions can be drawn: 

1. A water injection/drainage cycle stimulates hydrate formation in sediments 
2. Hydrate dissociation occurs during water injection due to the solubility of gas in water 
3. Shear-velocity measurements reveal qualitative hydrate formation/dissociation dynamics 
4. Rapid gas production may cause clogging and sediment fracturing 
5. Fluid drainage and depressurization lead to migration of fine particles 
6. Avoiding migration of fines, clogging, and sediment instability during gas production 

will require controlling the fluid flowrate. 


