Band-gap Opening Properties of Graphene Binding with Low-concentration Fluorine

Yuhua Duan^{1*} Benjamin Chorpening¹, Charter D. Stinespring²

¹National Energy Technology Laboratory, U. S. Department of Energy, Pittsburgh, PA 15236, USA ²Chemical Engineering Department, West Virginia University, Morgantown, WV 25506, USA Research & Innovation Center

Motivation

- In the area of energy applications, graphene and graphene-based nanomaterials have many promising applications. Although pure graphene sheets serve as a conceptual starting point, defects, native and intentional may play a critical role in modifying and possibly optimizing graphene properties in a given application.
- As a special semiconductor, graphene is a single-layer graphite sheet and acts as a zero band gap semimetal. The massless electrons in graphene with a Fermi velocity (~10⁶ m/s) are very useful in electronic applications, such as high frequency transistors and ultrafast photodetectors.^[1] However, such zero band-gap nature results in high leakage currents and power dissipation, limiting its applications.^[2-6] Hence, introducing a band gap in graphene through band structure engineering is highly useful for many applications. Creating defects and covalent binding with other atoms or molecules are effective ways to open band-gap on the zero-gap of pristine graphene.^[2]

Theoretical Approach

➢ To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single layer graphene films.^[7,8]

2F-Doped on Graphene

F on same side of G	G-1F	G-2F (case A ₁)	G-2F (case B ₁)	G-2F (case C ₁)	G-2F (case E ₁)	G-2F (case D ₁)
E _b (eV/1F)	-2.071	-2.225	-1.913	-2.301	-1.976	-2.158
Z _{CI} (Å)	0.503	0.845	0.637	0.623	0.505	0.525
r _{c-F} (Å)	1.575	1.462	1.553	1.495	1.589	1.528
∠F-C ₇ -C (*)	102.40	102.04	106.25	104.06	102.66	103.44
F on opposite side of G		G-2F (case A ₂)	G-2F (case B ₂)	G-2F (case C ₂)	G-2F (case E ₂)	G-2F (case D ₂)
E _b (eV/1F)		-2.531	-1.960	-2.275	-2.001	-2.165
Z _{CI} (Å)		0.344	0.394	0.433	0.507	0.512
$r_{C-F}(\dot{A})$		1.474 1.428 °	1.592 1.48 *	1.517	1.599	1.534
∠F-C ₂ -C (*)		104.16	104.66	102.22	102.77	103.21
* from ref. ^[5]	he calc	ulated ch	arges on	F and C	, F-band	l (B _F)
* from ref. ^[5] Table 2. T width and adsorbed	he calc gap be Graphe	ulated ch etween V ene (G).	arges on B ₁ and B	F and C _F (E _{VBF}) o	_F , F-band of 1F- and	l (B _F) d 2F-
from ref. ^[9] Table 2. T width and adsorbed F on same	he calc gap be Graphe G-1F	ulated ch etween V ene (G). G-2F	G-2F	F and C F (E _{VBF}) o G-2F	F, F-band of 1F- and G-2F	l (B _F) d 2F- G-2F
* from ref. ^[5] Fable 2. T width and adsorbed F on same side of G	he calc gap be Grapho G-1F	ulated ch etween V ene (G). G-2F (case A ₁)	G-2F (case B ₁)	F and C F (E _{VBF}) o G-2F (case C ₁)	F, F-band of 1F- and G-2F (case E ₁)	(B _F) d 2F- G-2F (case D ₁)
* from ref. ^[3] Table 2. T width and udsorbed F on same side of G E _{vBF} (eV)	he calc gap be Graphe G-1F 0.119	ulated ch etween V ene (G). G-2F (case A ₁) 0.371	G-2F (case B ₁) 0.352	F and C F (E _{VBF}) o G-2F (case C ₁) 0.478	F, F-band of 1F- and G-2F (case E ₁) 0.144	(B _F) d 2F- G-2F (case D ₁) 0.240
* from ref. ^[5] Table 2. T width and udsorbed F on same side of G E _{VBF} (eV) B _F width * E shares	he calc gap be Graphe G-1F 0.119 0.359	ulated ch etween V ene (G). G-2F (case A ₁) 0.371 0.124 0.124	G-2F (case B ₁) 0.352 0.587	F and C F (E _{VBF}) o G-2F (case C ₁) 0.478 0.120 0.250	F , F -band of 1 F - and G -2 F (case E ₁) 0.144 0.471 0.471	I (B_F) d 2F- (case D ₁) 0.240 0.359 0.58
* from ref. ^[9] Fable 2. T width and udsorbed F on same side of G E _{VBF} (eV) B _F width * F charge C, shareo	he calc gap be Grapho G-1F 0.119 0.359 -0.59 0.33	ulated ch etween V ene (G). G-2F (case A ₁) 0.371 0.124 -0.65	G-2F (case B ₁) 0.352 0.587 -0.57 0.39	F and C F (E _{VBF}) o G-2F (case C ₁) 0.478 0.120 -0.59 0.51	G-2F (case E ₁) 0.144 0.471 -0.58 0.49	I (B_F) d 2F- (case D ₁) 0.240 0.359 -0.58 0.48
* from ref. ^[9] Fable 2. T width and udsorbed F on same side of G E _{VBF} (eV) B _F width * F charge C _F charge	he calc gap be Grapho G-1F 0.119 0.359 -0.59 0.33	ulated ch etween V ene (G). G-2F (case A ₁) 0.371 0.124 -0.65 0.55 G-2F	G-2F (case B ₁) 0.352 0.587 -0.57 0.39 G-2F	F and C F (E _{VBF}) o G-2F (case C ₁) 0.478 0.120 -0.59 0.51 G-2F	G-2F (case E ₁) 0.144 0.471 -0.58 0.49 G-2F	G-2F (case D ₁) 0.240 0.359 -0.58 0.48 G-2F
* from ref. ^[3] Table 2. T width and adsorbed F on same side of G E _{VBF} (eV) B _F width * F charge C _F charge F on opposite side of G	he calc gap be Graphe G-1F 0.119 0.359 -0.59 0.33	ulated ch ctween V ene (G). G-2F (case A ₁) 0.371 0.124 -0.65 0.55 G-2F (case A ₂)	G-2F (case B ₁) 0.352 0.587 -0.57 0.39 G-2F (case B ₂)	F and C F (E _{VBF}) ((case C ₁) 0.478 0.120 -0.59 0.51 G-2F (case C ₂)	F, F-band G-2F (case E ₁) 0.144 0.471 -0.58 0.49 G-2F (case E ₂)	(B _F) d 2F- (case D ₁) 0.240 0.359 -0.58 0.48 G-2F (case D ₂)
* from ref. ^[7] Fable 2. T vidth and udsorbed F on same side of G E _{VBF} (eV) B _F width * F charge C _F charge F on opposite side of G E _{VBF} (eV)	he calc gap be Graphe 0.119 0.359 -0.59 0.33	ulated ch etween V ene (G). G-2F (case A ₁) 0.371 0.124 -0.65 0.55 G-2F (case A ₂) 0.366	G-2F (case B ₁) 0.352 0.587 -0.57 0.39 G-2F (case B ₂) 0.400	F and C F (E _{VBF}) of G-2F (case C ₁) 0.478 0.120 -0.59 0.51 G-2F (case C ₂) 0.365	F-band of 1F- and C-2F (case E ₁) 0.144 0.471 -0.58 0.49 G-2F (case E ₂) 0.118	(B _F) d 2F- (case D ₁) 0.240 0.359 -0.58 0.48 G-2F (case D ₂) 0.240
* from ref. ^[7] Table 2. T vidth and dsorbed F on same side of G E _{VBF} (v) B _F width * F charge C _F charge F on opposite side of G E _{VBF} (eV) B _F width *	he calc gap be Graphe 0.119 0.359 -0.59 0.33	ulated ch etween V ene (G). G-2F (case A ₁) 0.371 0.124 0.55 G-2F (case A ₂) 0.366 0.122	G-2F (case B ₁) 0.352 0.587 -0.57 0.39 G-2F (case B ₂) 0.400 0.582	F and C F (E _{VBF}) o G-2F (case C ₁) 0.478 0.120 0.59 0.51 G-2F (case C ₂) 0.365 0.121	F-band of 1F- and G-2F (case E ₄) 0.144 0.471 -0.58 0.49 G-2F (case E ₂) 0.118 0.353	G-2F (case D ₁) 0.240 0.359 -0.58 G-2F (case D ₂) 0.240 0.359
• from ref. ^[5] Table 2. T vidth and idsorbed Fon same side of G E _{VBF} (eV) B _F width * Fon opposite side of G E _{VBF} (eV) B _F width * Fon opposite side of G	he calc gap be Graphe 0.119 0.359 -0.59 0.33	ulated ch etween V ene (G). G-2F (case A,) 0.371 0.124 -0.65 0.55 G-2F (case A ₂) 0.366 0.122 -0.66	G-2F (case B ₁) 0.352 0.587 -0.57 0.39 G-2F (case B ₂) 0.400 0.582 -0.58	F and C F (E _{VBF}) (G-2F (case C ₁) 0.478 0.120 -0.59 0.51 G-2F (case C ₂) 0.365 0.121 -0.59	p, F-band of 1F- and (case E ₁) 0.144 0.471 -0.58 0.49 G-2F (case E ₂) 0.118 0.353 -0.58	G-2F (case D ₁) 0.240 0.359 -0.58 G-2F (case D ₂) 0.240 0.359 -0.58

Relationships of Binding Energy with F concentration

Supercell	1x1x1	2x1x1	2x2x1	3x3x1	4x4x1	5x5x1	6x6x1	7x7x1	8x8
# of C	2	4	8	18	32	50	72	98	12
F/C ratio	1/1	1/2	1/4	1/9	1/16	1/25	1/36	1/49	1/
F (%)	50	33.3	20	10	5.9	3.8	2.7	2	1
E. (eV/1F)	-2.778	-2.792	-2.556	-2.517	-2.518	-2.543	-2.528	-2.530	.2

Contact information: Tel. 412-386-5771, email: yuhua.duan@netl.doe.gov

Conclusions

- When graphene is adsorbed with fluorine, a valence band (B_F) near the E_F is formed mainly from the *p* orbitals of the fluorine atoms with some small contribution from the *p* orbitals of the carbon atoms. These C_F defects cause a buckling of the graphene surface. When two fluorine atoms are bonded to the graphene to form two C_F defects, the configuration with the fluorine atoms located on opposite sides of the surface represents the most stable structure with the lowest binding energy. Depending on the fluorine binding sites, the B_F can serve as a valence band or a conduction band. Among the five cases studied, only two cases (C and D) open a 0.37 eV and 0.24 eV band gap respectively. Other cases still have zero band gaps. The obtained result indicates the band gap opening for graphene with low Fadsorption level strongly depends on the F-binding configurations, which is different from the fully or highly partial fluorinated graphene.
- The binding energy of fluorine on graphene depends on the F-adsorption level due to neighboring fluorine interactions. The results presented here show that for case A_2 , with two fluorine adatoms binding to adjacent carbons, but on opposite sides of the graphene sheet, the binding energy remains nearly constant down to about 33.3% F-adsorption, decreases as the concentration is lowered to about 20%, and remains nearly constant as the fluorine concentration is lowered to 2%. This suggests that at low Fadsorption level, the interaction between neighboring pairs of fluorine adatoms is negligible and the most important interaction is between the fluorine and carbon atoms in the C_F defect.
- Further work are focusing on the optical and band-gap opening properties of the low-F concentration binding on multi-graphene layers with/without SiC support.

- 1. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, et al., Chem. Rev. 2012, 112, 6156-6214
- 2. L. Liao, H. L. Peng, Z. F. Liu, J. Am. Chem. Soc. 2014, 136, 12194-12200;
- 3. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, A. H. C. Neto, Rev. Mod. Phys. 2012, 84, 1067-1125.
- 4. R. Paupitz, P. A. S. Autreto, S. B. Legoas, et al, Nanotechnology 2013, 24, 035706
- 5. H. Y. Liu, Z. F. Hou, C. H. Hu, Y. Yang, Z. Z. Zhu, J. Phys. Chem. C 2012, 116, 18193-18201.
- 6. H. F. Bettinger, K. N. Kudin, G. E. Scuseria, J. Phys. Chem. A 2004, 108, 3016-3018
- Y. Duan, C. D. Stinespring, B. Chorpening, *ChemistryOPEN*, 2015, 4, 642-650
 S. Raghavan, T. J. Denig, T. C. Nelson, C. D. Stinespring, *J. Vac. Sci. Technol. B* 2012, 30, 030605.

Science & Engineering To Power Our Future